李宏毅机器学习 Machine_Learning_2019_Task 4_Part I

李宏毅机器学习 Machine_Learning_2019_Task 4_Part I

学习目标

在这里插入图片描述

理解概率模型

  • 基础概率推导贝叶斯公式以及朴素贝叶斯公式

    • 贝叶斯推论

      • 什么是贝叶斯定理(Bayes Theorem)

        • 官方解释:贝叶斯定理是关于事件A与事件B的条件概率和边缘概率的一项准则 or 定理

        • 意义解释:利用我们已有的知识(也称先验知识 or 先验信念)帮助计算相关事件的概率

        • 数学表示:
          P ( A ∣ B ) = P ( B ∣ A ) × P ( A ) P ( B ) P(A | B)=\frac{P(B | A) \times P(A)}{P(B)} P(AB)=P(B)P(BA)×P(A)
          其中,

          • P(A|B) 指在 B 发生的情况下 A 发生的可能性,即已知 B 发生后 A 的条件概率,也可以理解为先有 B 再有 A,由于源于 B 的取值而被称作 A 的后验概率
          • P(A) 指 A 的先验概率边缘概率(先验可以理解为事件 A 的发生不考虑任何 B 方面的因素)
          • P(B) 指 B 的先验概率边缘概率,也可以作为标准化常量
          • P(B|A) 指已知 A 发生后 B 的条件概率,即先有 A 再有 B,由于源于 A 的取值而被称作 B 的后验概率

          贝叶斯定理可以形象地描述为:后验概率 = (相似度*先验概率) / 标准化常量,即后验概率与相似度和先验概率的乘积成正比,由于 P(B|A) / P(B) 也被称作标准相似度,因此贝叶斯定理也可表述为:后验概率 = 标准相似度 * 先验概率

        • 小试牛刀x1 (贝叶斯定理示例)

          假定一副扑克牌里有 52 张牌,其中 26 张是红色的,26 张是黑色的。那么当牌是红色的时候,牌上数字为 4 的概率是多少?

          我们『将牌为数字 4 设为事件 A』,『将牌为红色设为事件 B』。此时我们需要计算的是概率 P(A|B) = P(4|Red),利用贝叶斯定理可计算出该概率值:

          • P(B|A) = P(Red|4) = 1/2
          • P(A) = P(4) = 4/52 = 1/13
          • P(B) = P(red) = 1/2
          • P(4|Red)=P(Red|4)*P(4) / P(Red) = 1/13 『 Bayes Theorem: 』
    • 先验概率(已解释)

    • 后验概率(已解释)

    Note: 先验知识本身并不是完全客观的,可能带有主观成分,甚至是完全的猜测。而这也会对最终的条件概率计算产生影响!!!

    • 贝叶斯推理

      • 定义

        推理』 or『统计』 是从数据中推导群体分布 or 概率分布的性质的过程。比如,最大似然估计,其可以通过一系列的观察数据点确定平均值的最大似然估计。因此,贝叶斯推理也是利用贝叶斯定理从数据中推导群体分布或概率分布的性质的过程.

      • 使用贝叶斯定理处理数据分布

        概率分布可分为离散型概率分布和连续性概率分布。对于离散型概率分布我们可以指定事件发生的可能性;而对于连续型概率分布,其可以为任何值,每个概率值对应一个先验信念,很自然的用函数的形式 f(x) 表示,以下分布也称为先验分布 (Prior Distribution)在这里插入图片描述Prior Distribution

      • 贝叶斯定理的模型形式

        我们将用 Θ 取代事件 AΘ 表示参数集合。如果要估计高斯分布参数值,则 Θ 代表了平均值 μ 和标准差 σ,用数学形式表示为 Θ = {μ, σ}

        我们用 datay={y1, y2, …, yn} 取代事件 B,它代表了观察数据的集合
        P ( Θ ∣ d a t a ) = P ( d a t a ∣ Θ ) × P ( Θ ) P ( d a t a ) P(\Theta | d a t a)=\frac{P(d a t a | \Theta) \times P(\Theta)}{P(d a t a)} P(Θdata)=P(data)P(dataΘ)×P(Θ)
        同理,

        • P(Θ) 是先验分布,其代表了我们相信的参数值分布
        • 等式左边的 P(Θ|data) 称为后验分布,其代表利用观察数据计算了等式右边之后的参数值分布
        • P(data| Θ) 和似然度分布类似

        Note: 对于 P(data) 的解释

        • 我们只对参数的分布感兴趣,而 P(data) 对此并没有任何参考价值

        • P(data) 的真正重要性在于它是一个归一化常数 or 标准化常量,它确保了计算得到的后验分布的总和等于 1

        • 在某些情况下,我们并不关心归一化,因此可以将贝叶斯定理写成这样的形式
          P ( Θ ∣ d a t a ) ∝ P ( d a t a ∣ Θ ) × P ( Θ ) P(\Theta | d a t a) \propto P(d a t a | \Theta) \times P(\Theta) P(Θdata)P(dataΘ)×P(Θ)
          其中 表示符号左边正比于符号右边的表达式

      • 小试牛刀x2 (贝叶斯推理示例 之 计算氢键键长,你无需知道 氢键是 神马东东-vv-)

        假设氢键是 3.2Å—4.0Å。该信息将构成问题的先验知识。就概率分布而言,将其形式化为均值

        μ = 3.6Å,标准差 σ = 0.2Å 的高斯分布(为何使用高斯分布,请参照前期Task)在这里插入图片描述氢键键长的先验分布

        我们现在选取一些数据(由均值为 3Å 和标准差为 0.4Å 的高斯分布随机生成的 5 个数据点),代表了氢键的测量长度(下图中的黄色点)。我们可以从这些数据点中推导出似然度分布,即下图中黄色线表示的似然度分布。注意从这 5 个数据点得到的最大似然度估计小于 3Å(大约 2.8Å)在这里插入图片描述

        氢键长度的先验分布(蓝线),和由 5 个数据点导出的似然度分布(黄线)

        现在我们有两个高斯分布。由于忽略了归一化常数,因此已经可以计算非归一化的后验分布了。高斯分布的定义如下
        P ( x ; μ , σ ) = 1 σ 2 π exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) P(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) P(x;μ,σ)=σ2π 1exp(2σ2(xμ)2)
        我们需要将上述的两个分布乘起来,然后得到下图的粉线所示的后验分布在这里插入图片描述 蓝色分布和黄色分布的乘积得到粉色的后验分布

        现在我们得到了氢键键长的后验分布,可以从中推导出统计特征…

    • 朴素贝叶斯

      • 定义

        朴素贝叶斯是基于贝叶斯定理特征条件独立假设的分类方法,对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入实例x,利用贝叶斯定理求出后验概率最大的输出y.

      • 基本方法与算法

        • 基本方法

          设输入空间
          X ⊆ R n \mathcal{X} \subseteq \mathbf{R}^{n} XRn
          为 n 维向量的集合,输出空间为类标记集合
          y i ∈ { c 1 , c 2 , ⋯   , c K } . y_{i} \in\left\{c_{1}, c_{2}, \cdots, c_{K}\right\}. yi{c1,c2,,cK}.
          输入为特征向量
          x ∈ X x \in \mathcal{X} xX
          输出为类标签
          y ∈ Y y \in \mathcal{Y} yY

          X 是 定 义 在 输 入 空 间 X 上 的 随 机 向 量 , Y 是 定 义 在 输 出 空 间 Y 上 的 随 机 变 量 . P ( X , Y ) 是 X 和 Y 的 联 合 概 率 分 布 , 训 练 集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } 由 P ( X , Y ) 独 立 产 生 . X 是 定义在输入空间\mathcal{X}上的随机向量,\\ \\ Y 是定义在输出空间\mathcal{Y}上的随机变量.\\ \\ P(X,Y)是X和Y的联合概率分布,\\ 训练集T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} 由P(X,Y)独立产生. XXYY.P(X,Y)XYT={(x1,y1),(x2,y2),,(xN,yN)}P(X,Y).

          朴素贝叶斯方法是通过训练数据集学习联合概率分布P(X,Y).

          具体来说,就是指学习以下的先验概率分布以及条件概率分布:

          • 先验概率分布
            P ( Y = c k ) , k = 1 , 2 , ⋯   , K P\left(Y=c_{k}\right), \quad k=1,2, \cdots, K P(Y=ck),k=1,2,,K

          • 条件概率分布(条件概率分布有指数级数量的参数,其估计实际上是不可取的!!!)
            P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) , k = 1 , 2 , ⋯   , K P\left(X=x | Y=c_{k}\right)=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)} | Y=c_{k}\right), \quad k=1,2, \cdots, K P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck),k=1,2,,K

          • 联合概率分布由先验概率和条件概率分布得知.

        朴素贝叶斯之所以称为朴素,是因为朴素贝叶斯方法是对条件概率分布作了条件独立性假设,由于这是一个较强的假设,因此朴素贝叶斯因此而得名。具体来说,条件独立性假设为:
        P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) \begin{aligned} P\left(X=x | Y=c_{k}\right) &=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)} | Y=c_{k}\right) \\ &=\prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} | Y=c_{k}\right) \end{aligned} P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)
        确定实例对应的类别:
        y = arg ⁡ max ⁡ a P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=\arg \max _{a} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} | Y=c_{k}\right) y=argamaxP(Y=ck)j=1nP(X(j)=x(j)Y=ck)

        • 算法(Naive Bayes Algorithm)在这里插入图片描述

          朴素贝叶斯算法

    • 高斯朴素贝叶斯

    • 多项式朴素贝叶斯

    • 贝叶斯信念网络(后续补充)

    • 贝叶斯网络(后续补充) 属于 图模型的范畴(最近GCN or GNN 图神经网络如如后春笋,实用价值很高)

    • 图模型(尽管模型清晰,但很难确定其依赖关系)

      • 马尔科夫随机域
      • 链图
    • 图神经网络(GNN)

      • 图卷积网络(GCN)
      • 图神经网络(GNN)
  • 判别模型(Descriminative Model) vs. 生成模型(Generative Model)

  • 判别模型

    • 判别模型是一种对观测数据进行直接分类的模型,常见的模型有逻辑回归(LR)感知机学习算法(SVM)等。此模型仅对数据进行分类,并不能具象化 or 量化数据本身的分布状态,因此也无法根据分类生成可观测的新数据
    • 从定义上来说,判别模型通过构建条件概率分布 p(y|x;θ) 预测 y,即在特征 x 出现的情况下标记 y 出现的概率。此处 p 可以是逻辑回归模型.
  • 生成模型

    • 与判别模型不同,生成模型是先了解数据本身分布情况,并进一步根据输入 x,给出预测分类 y 的概率。该模型有着研究数据分布形态的概念,可以根据历史数据生成可观测的新数据
    • 贝叶斯分类就是一个典型的例子。在这个例子中,我们有一个先验分类,根据这个先验分类,我们可以使用贝叶斯原理计算每个分类的概率,然后取对应概率最高的类别。同时,我们还可以根据特定的先验生成特征。这就是一个生成过程.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值