hardmard积 用什么符号表示_简明算术教程——第四章 线性代数——第1节 矩阵环(二)...

尽管Hadamard积的应用有趣而精妙,但它并非通常研究意义上的矩阵环乘法,所以我们浅尝搁置。现在我们就要开始介绍“真正的”矩阵环乘法了,按照惯例,我们还是继续用一个有趣的应用来将矩阵环乘法的定义引出。考虑下图点的移动,其中单箭头表示单向路径,双箭头则表示双向路径。例如:

现在我们有一个问题:设图中出现的点的个数为n,定义一步的操作为从一点移动到相邻另一点,那么问若以图中的点

为起点,经过m步后,到达点

的总路径数是多少?

对于此类问题,我们需要观察点与点之间相邻的情况,对此我们很自然的就想到了要用方阵来刻画它们的关系,于是我们就引出了毗邻矩阵的定义

(定义4.1.12)毗邻矩阵。设有n阶方阵

,其中元素

为点

到点

的路径数。需要注意的是,点

到点

与点

到点

是不一样的,它们的路径代表相反的方向。而这样的方阵就叫做图的毗邻矩阵,那么以上图为例,它的毗邻矩阵为

由此可见,用毗邻矩阵来表示点与点之间的相邻关系是十分简洁方便的。

有了这个方阵的表示,我们就可以开始着手解决这个问题了。首先我们考虑经过2步后

的总路径数,由于移动步数只有2步,所以它的路径类型必定形如

,其中

遍历图中的所有点,则经过某个点

的路径数为

,从而总路径数就是

,若令这个数为n阶方阵M的第i行第j列元素,使得

,那么这个矩阵的每一个元素(第i行第j列元素)就是经过2步后

的总路径数。若令M是毗邻矩阵A经过某种乘法

的2次乘幂,即

,则由此我们引出了矩阵环乘法的定义

(定义4.1.13)矩阵环乘法。设有

矩阵

矩阵

,则它们有矩阵环乘法

使得

,其中

矩阵。矩阵环乘法通常不遵循交换律,显然使得两矩阵可以进行矩阵环乘法的充要条件是左乘矩阵A的列数等于右乘矩阵B的行数(即n),那么当

时,若令左乘为B,右乘为A,则

就没有定义了,因为它们之间不能进行矩阵环乘法了,所以通常

。矩阵环乘法虽然不交换,但是遵循结合律,现在就能直接说明,设有

矩阵

,考虑矩阵乘积

,它有不同的结合次序

,其中

由于求和符号可交换,所以

,从而矩阵环乘法遵循结合律。

对比Hadamard积,我们发现定义Hadamard积的矩阵中的元素甚至不必是环中的元素,因为它有定义式

,这意味着A和B中的元素只需要存在一种运算即可,(只要求

属于某个群,甚至可以是任意单算符代数!)。再来看上述定义的乘法,它有定义式

,它蕴含了两种运算,于是它要求

属于某个环或者双算符代数。这么看来,的确是上述定义的乘法更加适合成为矩阵环乘法,尽管它的定义要比Hadamard积的定义要复杂,但这往往意味着它能做到的事会比Hadamard积能做到的更多,我们可以在接下来的章节拭目以待。所以,如无特殊的声明,我们默认矩阵乘积为矩阵环乘法,并用并列来表示矩阵环乘法而省略运算符

,同时又由于矩阵环乘法符合结合律,因此方阵可存在乘幂的表示,那么方阵的乘幂也默认为矩阵环乘法。

回到刚才的问题,无需花费多少功夫就能证得

(定理4.1.11)方阵

中的第i行第j列元素就是经过m步后

的总路径数。

证明:利用第一归纳法。先是归纳步骤,证明当m-1成立时,m成立。若m-1成立,那么方阵

中的第i行第k列元素就是经过m-1步后

的总路径数。设

,则先经过m-1步走到

后再到

的路径数为

,从而总路径数就是

,这恰好就是矩阵

,中的第i行第j列元素,进而m也成立。所以根据归纳原理,我们只需确保

时定理成立,而这是显然的。Q.E.D

在完美的解决了以上提出的问题后,我们不妨给这个问题增加一些难度:设图中出现的点的个数为n,若从某点

在可选择的路径中1步移动到另一点

的概率为固定概率

,那么问若以图中的点

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值