基于卷积神经网络(CNN)和长短期记忆网络(LSTM)混合深度模型的数据驱动方法用于预测电池剩余寿命(RUL)。
CNN和LSTM被用于并行提取多个可测数据(电压、电流、温度、容量)的特征。
CNN提取多通道充电特征,而LSTM提取与时间依赖相关的放电特征的历史容量数据特征。
基于卷积神经网络(CNN)和长短期记忆网络(LSTM)混合深度模型的数据驱动方法用于预测电池剩余寿命(RUL)。
CNN和LSTM被用于并行提取多个可测数据(电压、电流、温度、容量)的特征。
CNN提取多通道充电特征,而LSTM提取与时间依赖相关的放电特征的历史容量数据特征。