PP-OCRV3使用教程

PP-OCRV3使用教程

PP-OCRV3 ARM端部署

预准备

  1. 代码拷贝 or 远程传导

  2. 远程传导的方式:在PC的终端中输入

    scp -r <PC端文件路径> <ARM端用户名>@<ARMIP>:<ARM保存路径>

    例如:scp -r G:/opencv ubuntu@192.168.233.1.3:/home/ubuntu/
    (加一个-r是因为远程上传的是含有多级目录的文件夹)

环境变量

ARM端的环境变量需要添加我们的代码文件路径(因为用到了某些包在代码文件夹中)

  1. 方式1:

    sudo gedit .bashrc

    export PYTHONPATH=/home/agx2/OCR/Xvier:$PYTHONPATH

    source .bashrc

    reboot

  2. 方式2:

    执行代码中sys加入path路径

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

执行文件

python3.7 my_own/new/get_video.py

本文由mdnice多平台发布

要部署PP-OCRv3模型,你可以按照以下步骤进行操作: 1. 首先,下载并解压PP-OCRv3模型。你可以使用以下命令下载和解压目标检测模型和文字识别模型: ``` wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar tar xf ch_PP-OCRv3_det_infer.tar tar xf ch_PP-OCRv3_rec_infer.tar ``` 2. 接下来,你可以使用PaddleOCR计算模型的检测指标,包括Precision、Recall和Hmean(F-Score)等。这些指标可以帮助你评估模型的性能。 3. 如果你想使用PPOCRLabel工具对数据集进行标注,可以按照以下步骤进行安装和启动: - 对于Ubuntu Linux系统,使用以下命令安装PPOCRLabel和其依赖项: ``` pip3 install PPOCRLabel pip3 install trash-cli PPOCRLabel --lang ch ``` - 对于MacOS系统,使用以下命令安装PPOCRLabel和其依赖项: ``` pip3 install PPOCRLabel pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添加"-i https://mirror.baidu.com/pypi/simple" PPOCRLabel --lang ch ``` 请按照上述步骤进行PP-OCRv3模型的部署。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [ARM端部署PP-OCR_V3](https://blog.csdn.net/crazty/article/details/126484626)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [PPv3-OCR自定义数据从训练到部署](https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/125087878)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值