lucas定理

/*
Lucas 定理:A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。
则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  modp同
即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) 


对于单独的C(ni, mi) mod p,已知C(n, m) mod p = n!/(m!(n - m)!) mod p。显然除法取模,这里要用到m!(n-m)!的逆元。


根据费马小定理:


已知(a, p) = 1,则 a^(p-1) ≡ 1 (mod p),  所以 a*a^(p-2) ≡ 1 (mod p)。


也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)^(p-2) ;
*/
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cstring>
#include<cstdlib>
#include<vector>
#define LL long long
using namespace std;
LL PowMod(LL a,LL b,LL MOD){    //快速幂运算
    LL ret=1;
    while(b){
        if(b&1) ret=(ret*a)%MOD;
        a=(a*a)%MOD;
        b>>=1;
    }
    return ret;
}
LL fac[100005];
LL Get_Fact(LL p){             //fac数组存的是前i个数的乘积
    fac[0]=1;
    for(int i=1;i<=p;i++)
        fac[i]=(fac[i-1]*i)%p;
}
LL Lucas(LL n,LL m,LL p){    //lucas定理:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) 
    LL ret=1;
    while(n&&m){
        LL a=n%p,b=m%p;
        if(a<b) return 0;
        ret=(ret*fac[a]*PowMod(fac[b]*fac[a-b]%p,p-2,p))%p;
        n/=p;
        m/=p;
    }
    return ret;
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        LL n,m,p;
        scanf("%I64d%I64d%I64d",&n,&m,&p);
        Get_Fact(p);
        printf("%I64d\n",Lucas(n+m,m,p));
    }
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值