如何在服务器上用kaggle下载数据集

S1 服务器上安装kaggle cli工具

pip install --user kaggle

S2 服务器上创建kaggle目录

mkdir ~/.kaggle

S3 进入kaggle账户创建token

生成token

点击右上角头像,选择setting
在这里插入图片描述
点击create new token
在这里插入图片描述
进入你的浏览器下载页,可以看到有了一个kaggle.json
在这里插入图片描述

将kaggle.json文件复制到~/.kaggle目录下

使用scp指令,rz指令,ftp等一万种方式将将kaggle.json文件复制到~/.kaggle目录下,正常执行ls ~/.kaggle你应该可以看到下面这种结果:
在这里插入图片描述

进入数据集网页复制下载指令

点击 Copy API command ,即复制了下载指令
在这里插入图片描述

S4 粘贴指令进行下载

在这里插入图片描述
可以看到,速度很快~

后记:可能的问题

显示kaggle没有这个指令

1.查看自己的kaggle执行路径

echo ~/.local/bin

在这里插入图片描述
将这个地址写入~/.bash_file

2.编辑~/.bash_profile

vim ~/.bash_profile

3.用下面的格式写入:
export PATH="《刚才你得到的地址》:$PATH"
在这里插入图片描述
保存退出

4.更新~/.bash_profile
执行

source ~/.bash_profile

5.这个时候执行kaggle,可以看到已经有指令了
在这里插入图片描述

### 如何在Kaggle平台上加载和处理数据集 #### 加载数据集 为了在Kaggle平台上的Notebook中加载数据集,可以利用内置的功能来访问已有的数据集或者上传自己的文件。对于想要使用的特定数据集,可以直接通过搜索功能查找所需资源,并将其链接到当前的Notebook项目中[^2]。 当选择了合适的数据集之后,在编写代码之前应该确认该数据集已经被成功连接到了工作环境中。通常情况下,一旦完成连接操作,就可以直接读取这些数据而无需额外下载步骤。例如,如果要加载CSV格式的数据文件,则可使用Pandas库中的`read_csv()`函数: ```python import pandas as pd data_path = '../input/dataset-name/file_name.csv' # 替换为实际路径 df = pd.read_csv(data_path) ``` #### 处理数据集 在获取了原始数据后,下一步就是对其进行预处理以便后续分析或建模任务。这可能涉及到清理缺失值、转换数据类型以及特征工程等方面的工作。以Titanic生存预测竞赛为例,其中包含了乘客的基本信息及其是否存活的状态;针对这类结构化表格型数据,常见的做法包括但不限于去除无关列、填补空缺项等措施[^3]。 此外,还可以运用可视化工具探索变量之间的关系模式,从而更好地理解所面临的问题域。Matplotlib 和 Seaborn 是两个广泛应用于Python环境下的绘图包,能够帮助快速生成直观图表辅助决策过程。 最后值得注意的是,在某些场景下或许只需要部分样本而非整个集合来进行实验验证。此时可以通过随机抽样等方式选取子集用于测试目的,这样既能节省计算资源又能提高效率。 #### 下载经过处理后的数据集 假设已经在Kaggle Notebook里完成了必要的清洗与变换流程,那么现在可能会希望把最终版的结果保存起来供本地进一步研究之用。一种方法是将修改过的DataFrame对象导出成新的CSV文档形式存储于指定位置,然后再借助官方API实现自动化传输至个人计算机端: ```bash kaggle datasets download -d username/new-dataset-title -p /path/to/save/location/ ``` 上述命令展示了如何从远程服务器拉取由自己创建的新版本数据集实例[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值