AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?

本文的 原始 文章

传送门

尼恩:LLM大模型学习圣经PDF的起源

在40岁老架构师 尼恩的读者交流群(50+)中,经常性的指导小伙伴们改造简历。

经过尼恩的改造之后,很多小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试机会,拿到了大厂机会。

然而,其中一个成功案例,是一个9年经验 网易的小伙伴,当时拿到了一个年薪近80W的大模型架构offer,逆涨50%,那是在去年2023年的 5月。

不到1年,小伙伴也在团队站稳了脚跟,成为了名副其实的大模型 应用 架构师。接下来,尼恩架构团队,通过 梳理一个《LLM大模型学习圣经》 帮助更多的人做LLM架构,拿到年薪100W, 这个内容体系包括下面的内容:

以上学习圣经 的 配套视频, 2025年 5月份之前发布。

A100、H100、A800、H800、H20的差异

英伟达系列显卡大解析B100、H200、L40S、A100、A800、H100、H800、V100如何选择?

img

接下来,老架构师尼恩给大家做一个 升入浅出的系统化介绍。

一、 NVIDIA GPU架构

1、Volta 架构

Volta 架构是 NVIDIA GPU 的第六代架构。

Volta,NVIDIA GPU的第六代传奇,2017年荣耀登场。

Volta 架构 专注于深度学习和人工智能应用,首次引入了Tensor Core,为AI计算提供了前所未有的强大动力。

Tensor Core(张量计算核心)是由 NVIDIA 研发的 新型处理 核心 ,Tensor Core(张量计算核心) 可实现混合精度计算,并能根据精度的降低动态调整 算力 ,在保持准确性的同时提高 吞吐量 。

代表产品:V100、TiTan。

Volta 架构 凭借其卓越的深度学习性能和能效比,成为了当时人工智能领域的佼佼者,为后续的AI发展奠定了坚实基础。

2、Turing 架构

Turing 架构是 NVIDIA GPU 的第七代架构,发布于 2018 年。

Turing,NVIDIA GPU的第七代里程碑,2018年惊艳亮相。

Turing 架构 首次引入了实时光线追踪(RTX)技术 和 深度学习超采样(DLSS)等重要功能。

其中, Turing 架构引入的实时光线追踪(RTX) , 让游戏画面更加逼真动人。

同时,深度学习超采样(DLSS)技术的加入,也极大地提升了游戏性能。

Turing 架构 代表产品是T4、2080TI、RTX5000。

T4、2080TI、RTX5000等明星产品,正是Turing架构在图形处理和深度学习领域卓越表现的生动写照。

3、Ampere 架构

代表产品是A100、A800、A30系列。

Ampere,NVIDIA GPU的第八代传奇,2020年横空出世。

Ampere 架构 凭借多个流多处理器(SM)、更大总线宽度和更多CUDA Core,实现了计算能力和能效的双重飞跃。

所以,Ampere 架构在计算能力、能效和深度学习性能方面都有重大提升。

Ampere 架构 引入了 第三代Tensor Core ,更是让深度学习计算性能突飞猛进。

Ampere 架构的 GPU 还具有更高的内存容量和带宽,适用于大规模的数据处理和机器学习任务。

Ampere 架构 有 A100、A800、A30系列等经典产品,凭借其卓越的内存容量和带宽,成为了大规模数据处理和机器学习任务的首选。

4、Hopper 架构

Hopper 架构是 NVIDIA GPU 的第九代架构,2022 年发布。

Hopper,NVIDIA GPU的第九代杰作,2022年荣耀发布。

Ampere架构 引入了 第三代Tensor Core ,而 Hopper 架构支持第四代Tensor Core.

Hopper 架构 采用 新型流式处理器,每个 SM 能力更强。

每个SM性能飙升,为计算能力、深度学习加速和图形功能带来革命性提升。

Hopper 架构在计算能力、深度学习加速和图形功能方面带来新的创新和改进。

Hopper架构 代表产品是H100、H800。

H100、H800等明星产品,正是Hopper架构强大实力的最佳证明,它们正引领着AI和高性能计算的新潮流。

5、Blackwell 架构

Blackwell,NVIDIA最新的GPU架构,于2024年3月震撼登场。

同时,Blackwell 架构 还前瞻性地支持PCIe 5.0,尽管具体覆盖型号(如RTX 5090)尚需观察,但这无疑预示着消费级GPU新时代的来临。

Blackwell 架构 的 视频编解码能力也大幅增强,轻松应对 4:2:2视频流,为多媒体创作注入新活力。

二 扩展知识: 大白话 介绍 CUDA核心 和 Tensor核心

上的架构中,提到了两个核心:

  • CUDA Core (标量 计算 核心)

  • Tensor Core(张量计算核心)

1‌ 设计目标不同

  • CUDA核心‌:

像‌全能程序员‌,啥活儿都能干,但效率有上限

负责所有通用计算任务(比如加减乘除、逻辑判断、图像渲染),从科学模拟到游戏画面都要靠它,但处理AI的大规模矩阵乘法时速度慢、耗电高。

  • Tensor核心‌:

像‌数学竞赛冠军‌,专攻矩阵乘法

针对深度学习中**矩阵乘加运算(GEMM)**硬件级优化,单次操作能处理4x4矩阵块,速度比CUDA核心快5-20倍,但只能做特定类型的计算。

‌2 工作方式不同‌

对比维度CUDA核心Tensor核心
计算粒度单个数值计算(标量)矩阵块计算(例如4x4矩阵并行处理)
混合精度支持需手动切换精度(如FP32转FP16)自动混合精度(FP16输入+FP32累加防溢出)
指令集复杂度支持全功能指令集(浮点、整数、分支等)仅支持矩阵乘加(GEMM)和卷积类操作

举个栗子‌:计算A×B=C(矩阵乘法)

  • CUDA核心:逐个元素计算(需要n³次操作)

  • Tensor核心:把A和B拆成4x4小块,整块并行计算(次数减少到n³/16)

‌**3 算力性能对比(以A100为例)**‌

核心类型FP32算力FP16算力Tensor专用算力
CUDA核心19.5 TFLOPS78 TFLOPS不支持
Tensor核心-312 TFLOPS624 TFLOPS (TF32)

关键结论‌:

算力差距‌:Tensor核心的FP16算力是CUDA核心的4倍

能耗差距‌:完成相同矩阵计算,CUDA核心耗电是Tensor核心的3倍以上

‌4 使用场景差异‌

必须用CUDA核心的场景‌:

✅ 非矩阵类计算(如数据排序、条件判断)
✅ 需要高精度FP64的科学计算(天气模拟、核物理仿真)
✅ 图形渲染(光线追踪、纹理映射)

必须用Tensor核心的场景‌:

✅ 深度学习训练(ResNet、Transformer等模型)
✅ 推理加速(Stable Diffusion出图、ChatGPT生成文本)
✅ 视频超分辨率(4K视频实时修复)

三 A100、H100、A800、H800、H20 差异对比

1. A100:数据中心AI计算的基石

A100作为英伟达2020年发布的旗舰级数据中心GPU,基于Ampere架构

A100 拥有6912个CUDA核心和432个Tensor核心,配备80GB HBM2e显存,带宽高达2.04 TB/s。

A100的 NVLink技术可连接多个GPU以扩展算力,非常适合深度学习训练、推理、科学计算及大规模数据分析。

A100以其出色的性能和稳定性,成为数据中心AI计算的标杆。

A100是英伟达2020年发布的旗舰级 数据中心 GPU,基于Ampere架构,主要特性包括:

  • 架构:Ampere
  • CUDA核心数:6912
  • Tensor核心:432
  • 显存:80GB HBM2e
  • 带宽:2.04 TB/s
  • NVLink支持:可连接多个GPU以扩展算力
  • 应用场景:深度学习训练、推理、科学计算、大规模数据分析

A100可广泛应用于高性能计算(HPC)和深度学习任务,适用于需要大量计算资源的企业级用户。

2. H100:算力与效率的双重王者

H100作为A100的升级版,采用Hopper架构。

H100 的 CUDA核心数翻倍至14592,Tensor核心数也提升至456,显存和带宽保持不变。

H100特别优化了Transformer Engine,专为大型AI模型训练设计,如GPT系列。

H100 算力性能远超A100,且能效比更高,是AI训练、HPC及企业级AI推理的首选。

此外,H100的NVLink支持高带宽互联,进一步提升了多卡并行加速能力。

H100是A100的升级版,采用更先进的Hopper****架构,相比A100提升了数倍的计算性能,主要特性包括:

  • 架构:Hopper
  • CUDA 核心数 :14592
  • Tensor 核心 :456
  • 显存:80GB HBM2e(带宽高达3.35TB/s)
  • NVLink支持 :支持高带宽互联
  • Transformer Engine:专门优化AI大模型训练,如GPT-4
  • 应用场景:大规模AI训练、HPC、企业级AI推理

H100特别适用于大型AI模型训练,比如Llama、GPT、Stable Diffusion等,可以大幅提升训练效率。H100 特别优化了 Transformer Engine,在 FP8/FP16 下可大幅提升 AI 训练和推理性能,适用于 LLM(大语言模型)如 GPT-4。

3. A800:中国市场专供的AI计算利器

A800是英伟达为中国市场推出的受限版GPU,基于Ampere架构。

A800 与A100相似, 但NVLink互联带宽受限。

A800仍具备强大的AI计算和推理能力,适用于中国云计算厂商及大型企业。

虽然性能略逊于A100,但在中国市场具有极高的性价比和适用性。

A800 & H800:中国市场专供版

4. H800:中国市场大规模AI计算的新选择

H800作为H100的中国市场专供版,同样采用Hopper架构。

CUDA核心数和Tensor核心数与H100相同,但带宽受限。

H800保留了H100的高计算能力,适用于大型AI训练任务。

在中国市场,H800成为替代H100的理想选择,满足了大规模AI计算的需求。

A800和H800是英伟达专为中国市场推出的受限版GPU,以符合美国的出口管制要求:

  • A800:基于A100,限制了NVLink互联带宽,适合AI推理和训练
  • H800:基于H100,限制了带宽,但仍然保留了较高的计算能力,适用于大型AI训练

这些GPU主要面向中国客户,如阿里云、腾讯云、百度云等云计算厂商,性能稍逊于A100和H100,但仍然具备极高的计算能力。

5. H20:新一代中国市场受限算力GPU

H20是英伟达为中国市场设计的新一代受限版GPU, 采用Hopper架构。

H20 显存预计超过96GB,带宽受限。

H20的计算性能介于A800和H800之间,适用于AI训练和推理任务。

虽然具体性能指标需等待正式发布后确认,但H20的推出预示着英伟达在中国市场AI计算领域的持续布局和深化。

痛:美国一律不准英伟达卖给中国市场

像H100、A100、H800、A800、H200、GB200等性能更强的AI芯片,美国一律不准英伟达卖给中国市场了。

H20 是目前英伟达能够在国内销售的唯一专用AI芯片。

形势严峻:Deepseek 火爆,阉割80%性能的英伟达H20,反被中国疯抢

2025年,Deepseek崛起,对算力的要求似乎没那么高了, DeepSeek 甚至是戳破英伟达算力泡沫的英雄。

最近由于市场对 DeepSeek的需求旺盛,腾讯、阿里巴巴和字节跳动等正在大幅增加对英伟达H20的采购。

H20是什么芯片?

H20 英伟达是 阉割了又阉割的 H100 芯片,以H100为基础,阉割掉了80%以上的性能,特供给中国的芯片。

近日,有媒体报道称,目前中国市场短缺英伟达的H20芯片,一些OEM企业称,H20的库存已接近耗尽,所以采取以利润优先的原则进行,优先考虑大客户。

而这种供不应求,又催生了价格倒挂现象,搭载H20的服务器价格上涨,能够搞到H20的厂商,销售价格也上涨了。

不仅性能上有阉割,在架构和软件适配上也有所调整,比如保留Hopper架构但禁用 关键的张量核心,比如通过固件锁 限制超频和集群扩展规模。

而H20虽然性能阉割了,它不够H100强,但不正好可以应用于DS这种不需要太高算力的大模型上么?低性能也能发挥出优势啊。

另外H20的最大优势是CUDA生态,再加上H20显存大,标准版配备了96GB的HBM3显存,而新推出的H20版本则将显存容量提升至141GB,这在部署AI时,非常有优势。

为何不用国产 AI芯片?

因为DS的火爆,地方政府、金融机构、车企,互联网企业等等,都争相部署私有化模型,而支撑这场AI落地的算力基础设施GPU需求呈指数级增长。

所以很多企业,宁愿使用阉割版的H20,也不愿意使用国产AI芯片,就是因为低性能也可以使用,且生态更强。

按照专业人士的说法,如果本身是用CUDA训练出来的模型,如果使用其它生态,不使用CUDA可能需要花费高达6个月的时间成本,还不一定可以切换成功,风险很大。

数据显示,2024年H20在华销售额已达120亿美元,预计2025年将突破200亿,可见目前在AI芯片领域,形势还是相当严峻的,

国产AI厂商们真的要加油,不仅仅是芯片本身,还有生态方面也是要加强的。

NVIDIA A100、H100、A800、H800、H20 市场价格分析

单卡市场价格概览

‌A100‌:

  • 中国市场价格约 ‌12万~15万元/卡‌,受供需波动影响显著‌ 。
  • 官方售价约 ‌7万元/卡‌,但实际采购价因供应紧张常溢价至10万元以上‌ 。

‌H100‌:

  • 单卡价格约 ‌26.4万元/卡‌(官方售价3.65万美元)‌ ,高端渠道报价可达 ‌30万元/卡‌ 以上‌ 。
  • 整机配置(如8卡集群)价格超 ‌220万元‌,适用于大规模AI训练场景‌ 。

A800:

  • 中国市场特供型号,单卡价格约 ‌7万元/卡‌,性价比较A100更高‌ 。
  • 整机价格约 ‌15万元‌(含多卡配置及配套硬件)‌ 。

H800‌:

  • 单卡价格约 ‌6万元/卡‌,带宽性能受限但保留较强计算能力‌ 。
  • 整机价格约 ‌230万元‌,适合合规要求严格的场景‌ 。

‌H20‌:

  • 新一代中国市场特供型号,价格尚未完全公开,预计单卡价格介于 ‌A800与H800之间‌(约6万~8万元/卡)‌ 。
  • 8卡集群年成本超 ‌100万元‌,支持70B参数模型推理优化‌ 。

企业级AI应用环境规划方案

一、成本规划

环境算力成本占比核心策略
开发环境5%-10%消费级硬件+量化模型,年成本≤2万元‌
生产环境60%-70%采购整机降低单价,IB网络提升资源利用率‌
预生产/测试环境20%-25%复用闲置算力,采用按需付费云资源‌

一:开发环境设计(低成本快速迭代)

算力资源配置
  • 硬件‌:采用消费级GPU(如NVIDIA 3090)或CPU服务器(如Mac mini M4芯片,支持64GB统一内存),单卡/单节点即可满足需求‌。
  • 模型选型‌:优先使用QWen2-32B的量化版本(4-bit/8-bit),显存需求≤24GB,支持本地快速调试‌。
  • 存储‌:配置1TB NVMe SSD加速模型加载,外接雷雳5接口SSD提升数据吞吐‌。
    关键优化
  • 量化工具链‌:集成MLX框架的--metal_flash_attention参数,提升GPU利用率‌。
  • 资源隔离‌:通过Docker容器限制CPU/内存使用,避免开发环境资源抢占‌。

三:测试环境设计(性能验证与压力测试)

1 算力资源配置
  • 硬件‌:部署2-4卡H20集群(单卡96GB显存),支持显存池化技术,适配32B模型全参数测试‌。
  • 模型选型‌:使用DeepSeek-R1-32B原模型(非量化版),验证数学推理(AIME24)和代码生成(LiveCodeBench)性能‌。
  • 网络‌:配置10Gbps以太网,模拟生产环境通信延迟‌。
2 关键优化‌
  • 压力测试工具‌:集成vLLM框架,测试吞吐量(Token/s)和并发响应能力‌。
  • 显存监控‌:使用Prometheus+Granafa实时监控显存占用率,识别模型内存泄漏‌。

四:预生产环境设计(生产仿真与合规校验)

1 算力资源配置‌
  • 硬件‌:与生产环境同构的8卡H20服务器(显存池化达768GB),预留20%冗余算力‌。
  • 模型选型‌:部署强化学习优化后的QWen2-32B(RLHF版本),启用内置答案验证器和代码执行服务器‌
  • 存储‌:采用分布式Ceph存储,支持PB级数据缓存和快速回滚‌。
2 关键优化
  • 灰度发布‌:通过Kubernetes实现模型版本AB测试,流量分配比例可动态调整‌。
  • 安全合规‌:集成规则引擎校验输出内容,避免敏感信息泄露‌。

四、生产环境设计(高可用与弹性扩展)

1 算力资源配置‌
  • 硬件‌:多台8卡H20服务器集群(400Gbps InfiniBand互联),单节点功耗≤3.2kW,支持N+1冗余‌。
  • 模型选型‌:混合部署DeepSeek-R1(千亿参数MoE架构)和QWen2-32B,按业务场景动态路由请求‌。
  • 网络‌:全IB网络架构,端到端延迟≤5μs,保障大规模并行训练稳定性‌。
2 关键优化‌
  • 自动扩缩容‌:基于GPU利用率阈值(建议70%)触发弹性扩缩,节省30%闲置成本‌。
  • 灾备设计‌:跨地域部署3副本模型服务,RTO(恢复时间目标)≤5分钟‌。

五、模型 匹配建议

1、 QWen2-32B适用场景‌:

  • 开发/测试环境:单卡H20或消费级M4芯片‌ 。
  • 生产环境: QWen2-32B 与DeepSeek-R1组成混合服务,处理长文本(131k tokens)和逻辑推理任务。

2、 ‌DeepSeek-R1适用场景‌:

  • 预生产/生产环境:8卡H20集群,专用于千亿参数模型训练和高精度数学证明‌ 。

注:方案设计需结合企业实际业务规模调整,建议优先验证测试环境性能再逐步扩展‌ 。

生产/预生产 DeepSeek-R1 部署方案(2台8卡H20,年成本200万 )详细介绍

硬件配置‌

  • 计算节点‌:2台服务器,每台配备‌8张H20 GPU‌(单卡显存96GB,支持显存池化技术)‌ 。
  • 互联网络‌:采用‌**400Gbps InfiniBand(IB)**‌,通过CX7单口卡实现多机通信,保障低延迟与高吞吐‌ 。
  • 辅助硬件‌:每台服务器配置至少‌64核CPU、2TB DDR5内存、8TB NVMe存储‌,满足大规模数据处理需求‌ 。

‌性能优化‌

  • 显存压缩技术‌:支持DeepSeek显存压缩方案,70B参数模型显存需求从140GB压缩至35-50GB,提升单卡利用率‌ 。
  • 混合精度推理‌:采用FP8/BF16混合精度,结合MoE架构优化算力分配,推理效率提升30%+‌ 。

‌成本结构‌

项目成本占比说明
GPU硬件采购60%单卡H20约6万~8万元,8卡服务器成本约60万/台‌ ,2台120W+
IB网络设备15%400Gbps IB交换机及线缆投入‌
电力与运维20%单台功耗约3.2kW(300W/卡),年电费超10万元‌
软件授权5%含容器化部署工具及AI框架授权‌

测试环境QWen2-32B 部署方案(1台单卡H20,年成本5万+)

硬件配置

  • 单卡方案‌:1台服务器搭载‌单张H20 GPU‌(显存96GB),支持32B模型全量参数加载‌ 。
  • 量化优化‌:采用4-bit/8-bit量化技术,显存占用降低至24GB以下,适配单卡推理需求‌ 。
  • 配套硬件‌:搭配‌16核CPU、64GB内存、1TB NVMe存储‌,满足轻量级任务处理‌ 。

性能表现

  • 推理速度‌:单卡FP16算力148 Tflops,32B模型响应速度达15 token/s(输入长度≤4k)‌ 。
  • 能效比‌:300W功耗下,单位算力成本仅为H100方案的1/3‌ 。

成本结构

项目成本占比说明
GPU硬件采购70%单卡H20约6万~8万元,按3年折旧计年成本约2万‌
服务器维护20%年电费约1.5万元
软件与许可证10%含量化工具及推理框架授权‌

方案对比与适用场景

维度‌**DeepSeek-R1(2*8卡H20)**‌‌**QWen2-32B(单卡H20)**‌
适用任务超大规模模型训练/推理(如70B+参数)‌中等复杂度推理(如企业级问答系统)‌
性能优势支持多机显存池化,算力扩展性强‌低延迟、高性价比‌
推荐场景科研机构、大型企业AI实验室‌中小企业、开发者个人项目‌

部署建议

网络优化‌:DeepSeek-R1需优先部署IB网络,避免因通信瓶颈导致算力浪费‌ 。

成本控制‌:QWen2-32B建议采用预量化模型,减少显存占用及硬件投入‌ 。

运维监控‌:集成Prometheus+Granafa监控GPU利用率及健康状态,降低故障风险‌ 。

遇到问题,找老架构师取经

借助此文,尼恩给解密了一个高薪的 秘诀,大家可以 放手一试。保证 屡试不爽,涨薪 100%-200%。

后面,尼恩java面试宝典回录成视频, 给大家打造一套进大厂的塔尖视频。

通过这个问题的深度回答,可以充分展示一下大家雄厚的 “技术肌肉”,让面试官爱到 “不能自已、口水直流”,然后实现”offer直提”。

在面试之前,建议大家系统化的刷一波 5000页《尼恩Java面试宝典PDF》,里边有大量的大厂真题、面试难题、架构难题。

很多小伙伴刷完后, 吊打面试官, 大厂横着走。

在刷题过程中,如果有啥问题,大家可以来 找 40岁老架构师尼恩交流。

另外,如果没有面试机会,可以找尼恩来改简历、做帮扶。

遇到职业难题,找老架构取经, 可以省去太多的折腾,省去太多的弯路。

尼恩指导了大量的小伙伴上岸,前段时间,刚指导一个40岁+被裁小伙伴,拿到了一个年薪100W的offer。

狠狠卷,实现 “offer自由” 很容易的, 前段时间一个武汉的跟着尼恩卷了2年的小伙伴, 在极度严寒/痛苦被裁的环境下, offer拿到手软, 实现真正的 “offer自由” 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值