Hilbert排序

Hilbert排序是一种基于Hilbert填充曲线的二维排序方法,它能够实现空间聚簇,提高GIS数据物理存储性能。该文介绍了Hilbert排序原理及其实现算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Hilbert排序

 

陈玉进 李泉 南京跬步科技有限公司(http://www.creable.cn

 

一维索引已经非常成熟了,折半查找(二分查找)是我们最熟悉的线性索引查找方式,数据库中常用的B树索引,也是一种高效的一维索引,一维索引之所以容易解决是因为数据是可以“严格”线性排序的,就如同一维数轴上的数有严格的前后顺序,而二维平面,就不存在像一维数组那样严格的前后顺序一说,只能根据具体需要具体给定排序的定义,这个问题的本质就是二维到一维的映射排序,即n=f(x,y)。如二维数组是按行排列的,每个数组位置(x,y),对应一个序号,内外存其实是一维存储器,存在这种映射关系。

 

基于Hilbert填充曲线的二维排序,是另一种排序方式,如图是一、二、三阶填充曲线,它是延填充曲线经过格网的先后顺序来排列的,这种排序的最大特点——空间聚簇,所谓“空间聚簇”,就是空间上靠得近的网格,Hilbert排序后生成的序号也尽量靠近,而二维数组按行排序空间聚簇性较差。

 

 

 

 

 

空间聚簇有什么优点呢?下面来谈谈在GIS中的用途:地图显示时,空间上之间靠得近的要素被一起读取显示的概率大于之间离得远的要素,所以,靠得近的要素物理上靠近存储,这样就减少了计算机I/O读取外存的次数和寻道时间(I/O的存取单元是一个物理磁盘块),提高系统的性能,所以,Hilbert排序在GIS数据物理存储中有着重要的应用,线性可排序四叉树索引就是Hilbert排序的典型应用,这个将在后面的章节详细介绍

 

具体用算法怎么实现Hilbert排序呢?关键是用算法生成出Hilbert填充曲线,经典算法有:面向字节技术方法、几何方法、L系统方法、IFS迭代函数系统方法等,由于这些算法大都是对曲线的每条线段逐渐细分做递归计算, 每次运算粒度小, 当迭代次数较大时计算非常耗时,因此, 有必要研究大粒度的迭代算法,这里我们采用陈宁涛等提出的方法,采用“矩阵复制、翻转、迭代”的思想,解决大型Hilbert填充曲线生成的效率问题。下面详细介绍这个算法的思路(Hilbert填充曲线,要求网格单元个数是2^n×2^n,刚好与四叉树的要求一致,如果不符合这个条件,可以通过扩充网格的方法)。

 

 

 

 

 

 

如图,我们观察Hilbert填充曲线是如何从一阶生成二阶的,二阶又如何生成三阶的,等等如此迭代下去。这里我们只要看一阶如何生成二阶的,即如何由4个网格生成出16个网格的,下面按同样的方法迭代即可。我们先约定一下,四个网格的象限编号。

  d81

 

在二阶中,第1象限的四个网格是一阶对应的四个网格值加上4,即1×4;第2象限的四个网格是一阶对应的四个网格值加上8,即2×4;第3象限的四个网格值——首先把一阶中的四个网格作转置运算,即按正对角线互换,然后把一阶中置换后的四个网格加上12,即3×4;第0象限的四个网格是一阶对应的四个网格按“斜对角线”置换而

### 关于Hilbert曲线 #### 定义与特点 Hilbert曲线是一种分形曲线,属于空间填充曲线的一种。这种类型的曲线能够遍历给定区域内的每一个位置至少一次,并且保持良好的局部性——即物理上靠近的位置在曲线上也彼此邻近[^1]。 #### 算法实现 创建Hilbert曲线的过程相对较为复杂,涉及到递归操作以及方向变换。下面给出Python版本的简化版Hilbert曲线生成器: ```python def hilbert_curve(n, angle=90): """Generates coordinates of points on a Hilbert Curve.""" def hilbert(side_length, direction, turtle): if side_length == 0: return turtle.right(direction * angle) hilbert(side_length - 1, -direction, turtle) turtle.forward(1) turtle.left(direction * angle) hilbert(side_length - 1, direction, turtle) turtle.forward(1) hilbert(side_length - 1, direction, turtle) turtle.left(direction * angle) turtle.forward(1) hilbert(side_length - 1, -direction, turtle) turtle.right(direction * angle) import turtle as t t.setup(width=800, height=800) pen = t.Turtle() pen.speed('fastest') hilbert(4, 1, pen) t.done() ``` 此代码片段展示了如何利用海龟绘图库绘制简单的希尔伯特曲线图形。实际应用中可能会采用更加高效的迭代方式或其他优化技术来提高性能并减少资源消耗。 #### 应用场景 - **计算几何**: 如前所述,在处理球面点集时,`CGAL::hilbert_sort()` 函数通过运用Hilbert曲线实现了有效的排序机制,从而提高了基于此类数据的操作效率[^3]。 - **数据库索引**: 利用Hilbert曲线优秀的聚集特性可以帮助设计高效的空间索引结构,比如R树及其变体,这有助于加速地理信息系统(GIS)中的查询响应速度。 - **图像压缩**: 借助该曲线的良好覆盖性质,可以在不损失过多质量的前提下减小图片文件大小;同时也有利于视频编码领域内帧间预测环节的工作开展。 - **网络布局规划**: 对于某些特定场合下的通信基站部署或是传感器节点安排等问题而言,合理选用Hilbert曲线作为指导原则之一可获得不错的效果。 #### 数据结构影响 当涉及大量多维数据项之间的关系管理时,借助像Hilbert这样的空间填充曲线来进行预处理往往可以使后续的任务变得更加容易执行。例如,在增量式的几何运算里,预先按照某种形式排列好待处理实体之后再逐一加入目标容器之中,不仅有利于维持较好的访问模式,而且还能促进缓存命中率提升进而间接加快整体流程进展[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值