FOLD-R++的性能评估
1. 引言
随着机器学习技术的迅猛发展,越来越多的应用场景需要既具备高预测性能又易于解释的模型。FOLD-R++作为一种新的归纳逻辑编程(Inductive Logic Programming, ILP)算法,旨在通过生成可解释的普通逻辑程序(Normal Logic Programs, NLP),在保持高预测准确性的同时,提供对模型预测的透明解释。本文将详细介绍FOLD-R++在不同数据集上的性能评估,以及其相对于其他主流算法的优势。
2. FOLD-R++的性能评估
2.1 实验设置
为了评估FOLD-R++的性能,我们在多个标准数据集上进行了实验,包括但不限于UCI机器学习库中的数据集。实验中使用了以下几种评估指标:
- 准确度(Accuracy) :预测正确的样本占总样本的比例。
- 精确度(Precision) :预测为正类的样本中,实际为正类的比例。
- 召回率(Recall) :实际为正类的样本中,预测为正类的比例。
- F1分数(F1 Score) :精确度和召回率的调和平均数。
- 执行时间(Execution Time) :算法运行所需的时间。
所有实验均在配备Intel i5-10400 CPU @ 2.9 GHz和32 GB内存的台式机上进行,采用10折交叉验证方法以确保结果的可靠性。
超级会员免费看
订阅专栏 解锁全文
29

被折叠的 条评论
为什么被折叠?



