【清华集训2014】【BZOJ3812】主旋律

这篇博客介绍了如何使用状压DP解决图论中的强连通分量问题,通过转换为寻找子图不强连通的对立面来求解。作者详细解释了从计算不强连通子图的数量出发,结合容斥原理和DAG的构造方法,最终求得满足条件的边的子集数。文章包含样例输入和输出,并提供了解题思路和预处理方法。
摘要由CSDN通过智能技术生成

Description

响应主旋律的号召,大家决定让这个班级充满爱,现在班级里面有 n 个男生。
如果 a 爱着 b,那么就相当于 a 和 b 之间有一条 a→b 的有向边。如果这 n 个点的图是强联通的,那么就认为这个班级是充满爱的。
不幸的是,有一些不好的事情发生了,现在每一条边都可能被摧毁。我作为爱的使者,想知道有多少种摧毁的方式,使得这个班级任然充满爱呢?(说人话就是有多少边的子集删去之后整个图仍然强联通。)
Input

第一行两个数 n 和 m,表示班级里的男生数和爱的关系数。
接下来 m 行,每行两个数 a 和 b,表示男生 a 爱着男生 b。同时 a 不等于 b。
所有男生从 1 到 n 标号。
同一条边不会出现两遍,但可能出现 a 爱着 b,b 也爱着 a 的情况,这是两条不同的边。
Output

输出一行一个整数,表示对 109+7 取模后的答案。
Sample Input

5 15

4 3

4 2

2 5

2 1

1 2

5 1

3 2

4 1

1 4

5 4

3 4

5 3

2 3

1 5

3 1
Sample Output

9390
HINT

对于 100% 的数据满足: n≤15,0≤m≤n(n−1)。

Source

2015年国家集训队测试

一道很传统的题目.
首先很容易想到是状压DP.
题目所求的东西,可以转化为一个问题:”原图有多少个子图是强连通的.”
这个问题本身不太好做,但是我们可以考虑从他的对立面”多少子图是不强连通的”入手.

显然如果一个子图是不强连通的,那么他缩点后一定是一个节点数目大于等于2的DAG.
所以可以用总方案数减掉能划分出缩点后节点数目大于等于2的方案数,只要枚举有多少点点集缩点后是一个DAG,然后DP就行了.

既然选取的点集缩点后一定是个DAG,那么接下来的问题就变成了:给定一张有向图,有多少种选边方案使得选出来的子图构成一个DAG.

那么我们考虑枚举一个点集V,枚举出度为0的点集V’.然后可以容斥+DP.容斥过程中可以发现,如果V’中选的点缩完是奇数个点,对答案贡献是正的,否则是负的.然后只要算出奇数个点的方案减去偶数个点的方案就行了.

然而到这里还是只能在原题得70分…最后还要预处理一个 点集划分成奇数个没有出度的点减去偶数个没有出度的点 的方案数.

我的题解可能比较碎而且看不懂..可以看Po姐的代码里的注释,更加直接..

#include<iostream>
#include<cstdio>
#include<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值