Description
响应主旋律的号召,大家决定让这个班级充满爱,现在班级里面有 n 个男生。
如果 a 爱着 b,那么就相当于 a 和 b 之间有一条 a→b 的有向边。如果这 n 个点的图是强联通的,那么就认为这个班级是充满爱的。
不幸的是,有一些不好的事情发生了,现在每一条边都可能被摧毁。我作为爱的使者,想知道有多少种摧毁的方式,使得这个班级任然充满爱呢?(说人话就是有多少边的子集删去之后整个图仍然强联通。)
Input
第一行两个数 n 和 m,表示班级里的男生数和爱的关系数。
接下来 m 行,每行两个数 a 和 b,表示男生 a 爱着男生 b。同时 a 不等于 b。
所有男生从 1 到 n 标号。
同一条边不会出现两遍,但可能出现 a 爱着 b,b 也爱着 a 的情况,这是两条不同的边。
Output
输出一行一个整数,表示对 109+7 取模后的答案。
Sample Input
5 15
4 3
4 2
2 5
2 1
1 2
5 1
3 2
4 1
1 4
5 4
3 4
5 3
2 3
1 5
3 1
Sample Output
9390
HINT
对于 100% 的数据满足: n≤15,0≤m≤n(n−1)。
Source
2015年国家集训队测试
一道很传统的题目.
首先很容易想到是状压DP.
题目所求的东西,可以转化为一个问题:”原图有多少个子图是强连通的.”
这个问题本身不太好做,但是我们可以考虑从他的对立面”多少子图是不强连通的”入手.
显然如果一个子图是不强连通的,那么他缩点后一定是一个节点数目大于等于2的DAG.
所以可以用总方案数减掉能划分出缩点后节点数目大于等于2的方案数,只要枚举有多少点点集缩点后是一个DAG,然后DP就行了.
既然选取的点集缩点后一定是个DAG,那么接下来的问题就变成了:给定一张有向图,有多少种选边方案使得选出来的子图构成一个DAG.
那么我们考虑枚举一个点集V,枚举出度为0的点集V’.然后可以容斥+DP.容斥过程中可以发现,如果V’中选的点缩完是奇数个点,对答案贡献是正的,否则是负的.然后只要算出奇数个点的方案减去偶数个点的方案就行了.
然而到这里还是只能在原题得70分…最后还要预处理一个 点集划分成奇数个没有出度的点减去偶数个没有出度的点 的方案数.
我的题解可能比较碎而且看不懂..可以看Po姐的代码里的注释,更加直接..
#include<iostream>
#include<cstdio>
#include<