【BZOJ3812】【UOJ37】【清华集训2014】主旋律(状压DP)

83 篇文章 0 订阅
17 篇文章 0 订阅

Description

给定有向图,询问有多少种删边的方案满足剩余部分强联通。


Solution

f [ S ] f[S] f[S]表示有多少个边集使点集S构成了一个强连通分量
g [ S ] g[S] g[S]表示有多少个边集使点集S划分成互相之间没有边偶数个强连通分量
h [ S ] h[S] h[S]表示有多少个边集使点集S划分成互相之间没有边奇数个强连通分量
那么有转移:
g [ S ] = ∑ f [ T ] ∗ h [ S − T ] g[S] = ∑ f[T] * h[S - T] g[S]=f[T]h[ST]
h [ S ] = ∑ f [ T ] ∗ g [ S − T ] h[S] = ∑ f[T] * g[S - T] h[S]=f[T]g[ST]
f [ S ] = 2 E [ S ] [ S ] − ∑ ( h [ T ] − g [ T ] ) ∗ 2 E [ T ] [ S ] f[S] = 2 ^ {E[S][S]} - ∑ (h[T] - g[T]) * 2 ^ {E[T][S]} f[S]=2E[S][S](h[T]g[T])2E[T][S]
E [ S ] [ T ] E[S][T] E[S][T]表示点集 S S S T T T的边的数量)


Code

/************************************************
 * Au: Hany01
 * Date: Aug 19th, 2018
 * Prob: BZOJ3812 主旋律
 * Email: hany01@foxmail.com
 * Inst: Yali High School
************************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef long double LD;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia
#define count __builtin_popcount
#define lb(x) ((x) & -(x))

template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read() {
	static int _, __; static char c_;
    for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
    for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

const int maxm = 107, maxs = 1 << 15, MOD = 1e9 + 7;

inline int Pow(int a, int b) {
	static int Ans;
	for (Ans = 1; b; b >>= 1, a = (LL)a * a % MOD) if (b & 1) Ans = (LL)Ans * a % MOD;
	return Ans;
}
inline int ad(int x, int y) { if ((x += y) >= MOD) return x - MOD; return x; }

int main()
{
#ifdef hany01
	freopen("bzoj3812.in", "r", stdin);
	freopen("bzoj3812.out", "w", stdout);
#endif

	static int n, m, all, pow2[maxm * maxm], out[maxs], E[maxs], u, v, h[maxs], g[maxs], f[maxs];
	static stack<int> stk;

	n = read(), m = read(), all = 1 << n, pow2[0] = 1;
	For(i, 1, m) u = read(), v = read(), out[1 << (u - 1)] |= (1 << (v - 1)), pow2[i] = ad(pow2[i - 1], pow2[i - 1]);

	//f[S]: 有多少个边集使点集S构成了一个强连通分量
	//g[S]: 有多少个边集使点集S划分成互相之间没有边偶数个强连通分量
	//h[S]: 有多少个边集使点集S划分成互相之间没有边奇数个强连通分量

	//g[S] = ∑ f[T] * h[S - T]
	//h[S] = ∑ f[T] * g[S - T]
	//f[S] = 2 ^ E[S][S] - ∑ (g[T] - h[T]) * 2 ^ (E[T][S])
	//Ans  = f[all]

	g[0] = 1, f[0] = 1;
	For(S, 1, all - 1) {
		for (register int T = S; T; (-- T) &= S) stk.push(T);
		for (register int t; !stk.empty(); stk.pop())
			t = stk.top(), E[t] = E[t ^ lb(t)] + count(out[lb(t)] & S);
		f[S] = pow2[E[S]];
		for (register int T = (S - 1) & S; T; (-- T) &= S) {
			if (T & lb(S)) g[S] = ad(g[S], (LL)f[T] * h[S ^ T] % MOD), h[S] = ad(h[S], (LL)f[T] * g[S ^ T] % MOD);
			f[S] = ad(f[S], MOD - (LL)pow2[E[S ^ T]] * ad(h[T], MOD - g[T]) % MOD);
		}
		f[S] = ad(f[S], MOD - ad(h[S], MOD - g[S])), h[S] = ad(h[S], f[S]);
	}
	printf("%d\n", f[all - 1]);

	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值