2017浙江理工大学校赛H题

4 篇文章 0 订阅

4273: 玩具
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 779 Solved: 157
Description
商店有n个玩具,第i个玩具有价格a[i]和快乐值b[i]。有一天,小王来到商店想买一些玩具,商店老板告诉他,如果他买的所有玩具的位置是连续的,那么老板答应小王购买的所有玩具中某一个可以免费。小王接受老板的提议,他现在有零花钱k可以用来买玩具,那么他能获得的最大的快乐值是多少。
Input
第一行给测试总数T(T <= 100),接下来有T组测试数据。
每组测试数据第一行有两个数字n(1 <= n <= 5000)和k(0 <= k <= 1000000000)。
第二行有n个数字,第i个数字表示第i个玩具的价格a[i](1 <= a[i] <= 1000000)。
第三行有n个数字,第i个数字表示第i个玩具的快乐值b[i](1 <= b[i] <= 1000000)。
Output
每组测试输出小王能获得的最大快乐值。
Sample Input
3
5 14
1 2 3 4 5
5 4 3 2 1
3 1
100 1000 10000
100 1000 10000
1 0
1000000
1000000
Sample Output
15
10000
1000000
HINT
题意:中文题面,自己看。

解题思路:给人的第一感觉是背包,还是超大背包,加贪心,刚开始题目意思理解错了,以为是既可以连续,又可以不连续,然后就GG,小伙伴们看见了这句话没有“小王接受老板的提议”,这句话的意思就是一定要连续,那么要连续的话就简单多了,处理出区间最大值就行,然后枚举区间左端点,二分区间右端点,取最大值就行,至于区间最大值,可以用线段树,rmq,应该都行,我这里用的是rmq。

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn = 5e3 + 10;
int n;
ll k;
ll a[maxn];
ll b[maxn];
ll dp[maxn][20];
int Log[maxn];
ll suma[maxn];
ll sumb[maxn];
void initRmq()
{
    Log[0] = -1;
    memset(dp,0,sizeof(dp));
    for(int i = 1; i <= n; i++)
    {
        Log[i] = (i&(i - 1)) == 0?Log[i - 1] + 1:Log[i - 1];
        dp[i][0] = a[i];
    }
    for(int j = 1; (1<<j) <= n; j++)
    {
        for(int i = 1; i <= n&&(i + (1<<j) - 1) <= n; i++)
        {
            dp[i][j] = max(dp[i][j - 1],dp[i + (1<<(j - 1))][j - 1]);
        }
    }
}
ll rmq(int l,int r)
{
    int k = Log[r - l + 1];
    return max(dp[l][k],dp[r - (1<<k) + 1][k]);
}
bool ok(int i,int x)
{
    ll ans = rmq(i,x);
    if(suma[x] - suma[i - 1] - ans <= k) return true;
    else return false;

}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(suma,0,sizeof(suma));
        memset(sumb,0,sizeof(sumb));
        scanf("%d%lld",&n,&k);
        for(int i = 1; i <= n; i++)
        {
            scanf("%lld",&a[i]);
            suma[i] = suma[i - 1] + a[i];
        }
        for(int i = 1; i <= n; i++)
        {
            scanf("%lld",&b[i]);
            sumb[i] = sumb[i - 1] + b[i];
        }
        initRmq();
        ll Max = 0;
        int l = 1;
        ll sum = 0;
        ll value = 0;
        for(int i = 1; i <= n; i++)
        {

            int l = i;
            int r = n;
            int result = -1;
            while(l <= r)
            {
                int mid = (l + r)>>1;
                if(ok(i,mid))
                {
                    result = mid;
                    l = mid + 1;
                }
                else r = mid - 1;
            }
            if(result != -1) Max = max(Max,sumb[result] - sumb[i - 1]);

        }
        printf("%lld\n",Max);
    }
    return 0;
}

/**************************************************************
    Problem: 4273
    User: creatorx
    Language: C++
    Result: Accepted
    Time:100 ms
    Memory:2428 kb
****************************************************************/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值