Code for Anomaly Detection

Estimating parameters for a Gaussian

function [mu sigma2] = estimateGaussian(X)

%ESTIMATEGAUSSIAN This function estimates the parameters of a 
%Gaussian distribution using the data in X
%   [mu sigma2] = estimateGaussian(X), 
%   The input X is the dataset with each n-dimensional data point in one row
%   The output is an n-dimensional vector mu, the mean of the data set
%   and the variances sigma^2, an n x 1 vector

% Useful variables
[m, n] = size(X);

% You should return these values correctly
mu = zeros(n, 1);
sigma2 = zeros(n, 1);

% Instructions: Compute the mean of the data and the variances
%               In particular, mu(i) should contain the mean of
%               the data for the i-th feature and sigma2(i)
%               should contain variance of the i-th feature.
%
mu=mean(X);
sigma2=var(X);

end

Selecting the threshold, ε

function [bestEpsilon bestF1] = selectThreshold(yval, pval)

%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
%outliers
%   [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
%   threshold to use for selecting outliers based on the results from a
%   validation set (pval) and the ground truth (yval).

bestEpsilon = 0;
bestF1 = 0;
F1 = 0;

stepsize = (max(pval) - min(pval)) / 1000;
for epsilon = min(pval):stepsize:max(pval)

    % Instructions: Compute the F1 score of choosing epsilon as the
    %               threshold and place the value in F1. The code at the
    %               end of the loop will compare the F1 score for this
    %               choice of epsilon and set it to be the best epsilon if
    %               it is better than the current choice of epsilon.
    %               
    % Note: You can use predictions = (pval < epsilon) to get a binary vector
    %       of 0's and 1's of the outlier predictions
    %  you can find out how many values in this vector are 0 by using: sum(v == 0). 

predictions=(pval<epsilon);      
tp=sum((yval==1)&(predictions==1));  
fp=sum((yval==0)&(predictions==1)); 
fn=sum((yval==1)&(predictions==0)); 
prec=tp/(tp+fp);
rec=tp/(tp+fn);  
F1=2*prec*rec/(prec+rec);

    if F1 > bestF1
       bestF1 = F1;
       bestEpsilon = epsilon;
    end
end

end
Anomaly Transformer是一种基于变压器的异常检测模型,它使用自适应和对抗训练过程。该模型的架构使其能够快速训练和测试,并且能够处理大输入序列。与简单的基于变压器的编码器-解码器网络相比,Anomaly Transformer通过一种对抗性训练程序来缓解重建误差,从而更好地检测异常。\[2\] 在Anomaly Transformer的代码中,可以看到使用了一种名为EncoderAtt的编码器。在该编码器中,通过将原来的.cuda()替换为.to(device),将模型移动到指定的设备上进行训练和推断。具体来说,self.encoder = EncoderAtt(input_size=self.X.shape\[1\], hidden_size=encoder_hidden_size, T=T).to(device)这行代码将EncoderAtt模型移动到指定的设备上。\[3\] Anomaly Transformer的代码可以在GitHub上找到,具体地址是:GitHub - thuml/Anomaly-Transformer: About Code release for &quot;Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy&quot; (ICLR 2022 Spotlight) \[1\]。你可以在该代码库中找到更多关于Anomaly Transformer的实现细节和使用方法。 #### 引用[.reference_title] - *1* *3* [Anomaly-Transformer (ICLR 2022 )代码通过CPU复现](https://blog.csdn.net/weixin_44385635/article/details/130146282)[target=&quot;_blank&quot; data-report-click={&quot;spm&quot;:&quot;1018.2226.3001.9630&quot;,&quot;extra&quot;:{&quot;utm_source&quot;:&quot;vip_chatgpt_common_search_pc_result&quot;,&quot;utm_medium&quot;:&quot;distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt&quot;}} ] [.reference_item] - *2* [TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data](https://blog.csdn.net/zj_18706809267/article/details/125059124)[target=&quot;_blank&quot; data-report-click={&quot;spm&quot;:&quot;1018.2226.3001.9630&quot;,&quot;extra&quot;:{&quot;utm_source&quot;:&quot;vip_chatgpt_common_search_pc_result&quot;,&quot;utm_medium&quot;:&quot;distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt&quot;}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值