FZU 2125 简单的等式 枚举解方程式


Problem 2125 简单的等式

Accept: 87    Submit: 357
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

现在有一个等式如下:x^2+s(x,m)x-n=0。其中s(x,m)表示把x写成m进制时,每个位数相加的和。现在,在给定n,m的情况下,求出满足等式的最小的正整数x。如果不存在,请输出-1。

 Input

有T组测试数据。以下有T(T<=100)行,每行代表一组测试数据。每个测试数据有n(1<=n<=10^18),m(2<=m<=16)。

 Output

输出T行,有1个数字,满足等式的最小的正整数x。如果不存在,请输出-1。

 Sample Input

44 10110 1015 2432 13

 Sample Output

-110318

 Source

福州大学第十届程序设计竞赛


从小到大枚举s(x,m),然后根据解二次方程的公式,x=(-b+-sqrt(b^2-4*a*c))/2,分别求出x的值,然后观察x是否满足 x^2+s(x,m)x-n=0这个等式,如果满足,则输出x的值,因为告诉你了n和m的范围n(1<=n<=10^18),m(2<=m<=16)。所以最多枚举到200就可以了,另外福州大学用lld是WA,I64d则过。

#include<stdio.h>
#include<math.h>
long long s(long long n,long long m)
{
    long long ans=0;
    while(n)
    {
        ans+=n%m;
        n/=m;
    }
    return ans;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        long long m,n,x;
        int flag=0;
        scanf("%I64d%I64d",&n,&m);
        for(int i=1;i<=200;i++)
        {
            x=(long long)(sqrt(i*i+4*n)/2-i/2);
            if(x*x+x*s(x,m)-n==0)
            {
                flag=1;
                break;
            }
        }
        printf("%I64d\n",flag?x:-1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值