Problem 2125 简单的等式
Accept: 87 Submit: 357
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
现在有一个等式如下:x^2+s(x,m)x-n=0。其中s(x,m)表示把x写成m进制时,每个位数相加的和。现在,在给定n,m的情况下,求出满足等式的最小的正整数x。如果不存在,请输出-1。
Input
有T组测试数据。以下有T(T<=100)行,每行代表一组测试数据。每个测试数据有n(1<=n<=10^18),m(2<=m<=16)。
Output
输出T行,有1个数字,满足等式的最小的正整数x。如果不存在,请输出-1。
Sample Input
44 10110 1015 2432 13
Sample Output
-110318
Source
福州大学第十届程序设计竞赛
从小到大枚举s(x,m),然后根据解二次方程的公式,x=(-b+-sqrt(b^2-4*a*c))/2,分别求出x的值,然后观察x是否满足
x^2+s(x,m)x-n=0这个等式,如果满足,则输出x的值,因为告诉你了n和m的范围n(1<=n<=10^18),m(2<=m<=16)。所以最多枚举到200就可以了,另外福州大学用lld是WA,I64d则过。
#include<stdio.h>
#include<math.h>
long long s(long long n,long long m)
{
long long ans=0;
while(n)
{
ans+=n%m;
n/=m;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
long long m,n,x;
int flag=0;
scanf("%I64d%I64d",&n,&m);
for(int i=1;i<=200;i++)
{
x=(long long)(sqrt(i*i+4*n)/2-i/2);
if(x*x+x*s(x,m)-n==0)
{
flag=1;
break;
}
}
printf("%I64d\n",flag?x:-1);
}
return 0;
}