作业(2个)

目录

一、为什么损失函数不用MSE

二、给逻辑回归代码加上正则化

一、为什么损失函数不用MSE

 

二、给逻辑回归代码加上正则化

简单的说,就是给代价函数后面加上一个小尾巴惩罚项,比如在线性回归函数中:

 

其中,拉姆达称为惩罚项系数。小尾巴前面那一项是我们本来的代价函数,现在加上惩罚项后,我们要使得代价函数最小,则后面的小尾巴也必须要小,小尾巴小的话,那么塞塔就不能太大,如果过小,那么就接近0,也就可以近似看成没有了那个特征。

接下来不断梯度下降,不断迭代以下过程。

代码:

# 实现正则化的代价函数
def costReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
    reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2))
    return np.sum(first - second) / len(X) + reg
 
# 实现正则化的梯度函数
def gradientReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    
    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    
    error = sigmoid(X * theta.T) - y
    
    for i in range(parameters):
        term = np.multiply(error, X[:,i])
        
        if (i == 0):
            grad[i] = np.sum(term) / len(X)
        else:
            grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i])
    
    return grad
 
#sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
 
#预测函数
def predict(theta, X):
    probability = sigmoid(X * theta.T)
    return [1 if x >= 0.5 else 0 for x in probability]

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值