目标检测
文章平均质量分 79
CristianoC20
公众号:计算机视觉漫谈,CV/RL爱好者
展开
-
全面解析可变形卷积家族(Deformable Convolutional Networks v1+ v2)
目录DCN v1DCN v2参考DCN v1背景在计算机视觉领域,同一物体在不同场景,角度中未知的几何变换是检测/识别的一大挑战,通常来说我们有两种做法:(1)通过充足的数据增强,扩充足够多的样本去增强模型适应尺度变换的能力。(2)设置一些针对几何变换不变的特征或者算法,比如SIFT和sliding windows。两种方法都有缺陷,第一种方法因为样本的局限性显然模型的泛化能力比较低,无法泛化到一般场景中,第二种方法则因为手工设计的不变特征和算法对于过于复杂的变换是很难的而无法设计。所原创 2020-08-11 11:51:21 · 4163 阅读 · 2 评论 -
元学习Meta-Learning—授人以鱼不如授人以渔
目录背景Meta-Learning的数据划分MAML算法MAML的思考参考背景我们知道现在深度学习在使用大型数据集掌握一项任务(检测,分类等)方面取得了巨大的成功,但这并不是真正我们追求的“人工智能”。具体来说,我们可能训练了一个能做物理题很高分的学生,但是他也只能做物理题而已,面对数学题他只能吞下零分的命运;其次,在面对新的任务(数学题)的时候,我们的学生仍然需要大量的数据(数学题)进行训练,而在学习物理的时候积累下的学习方法(先验知识)却基本帮不上忙。以上的问题可以抽象为一个具体的问原创 2020-08-03 18:43:06 · 1734 阅读 · 1 评论 -
深度解析文本检测网络CTPN
不同于网上千篇一律讲解CTPN的文章,本文将使用大量可视化过程来帮助大家理解CTPN,完整重现CTPN所有细节。先用一张动图过一遍CTPN全过程,接下来开始我们的讲解。目录文本检测概念初识CTPN总体结构特殊的anchor双向LSTMRPN层NMS文本线构造算法文本框矫正损失函数效果图参考文本检测概念初识OCR(光学字符识别)是CV一个重要的研究领域,O...原创 2020-04-30 19:41:40 · 1420 阅读 · 0 评论 -
多图+公式全面解析RNN,LSTM,Seq2Seq,Attention注意力机制
本文将会使用大量的图片和公式推导通俗易懂地讲解RNN,LSTM,Seq2Seq和attention注意力机制,希望帮助初学者更好掌握且入门。目录RNNLSTMSeq2Seq注意力机制参考RNN(递归神经网络)我们知道人类并不是从零开始思考东西,就像你读这篇文章的时候,你对每个字的理解都是建立在前几个字上面。你读完每个字后并不是直接丢弃然后又从零开始读下一个字,因为你的思想是...原创 2020-04-24 16:28:09 · 4806 阅读 · 0 评论 -
深入浅出理解Faster R-CNN
之前讲解了one-stage算法的代表YOLO,今天将以自顶向下的思想,深入浅出地帮助读者理解two-stage算法代表Faster R-CNN。目录整体结构基础网络AnchorRegion Proposal Network(RPN网络)RPN网络的训练以及损失函数RPN后期处理Region of Interst Pooling(RoI)Region-based Convo...原创 2020-04-03 11:49:44 · 297 阅读 · 0 评论 -
YOLO v3实战之钢筋智能识别改进方案分享(二)
最后本方案线上取得的最高F1 score为0.98336,作为one-stage算法来说算是还可以,由于很多参数只是粗调,预计还能有千分位的提高,感兴趣的读者可以自行尝试,接下来分享一下我在这个场景下关于YOLO v3的改进方案。先上分数:代码已上传至:https://github.com/cristianoc20/Rebar_Detection,欢迎各位给个star目录评判标准...原创 2020-03-07 21:23:14 · 1850 阅读 · 8 评论 -
YOLO v3实战之钢筋数量AI识别(一)
本次的YOLO v3实战是基于DataFountain的一个比赛:智能盘点—钢筋数量AI识别,baseline model就选用上次讲解YOLO v3理论YunYang复现的YOLO v3。本次系列也和正常我们做比赛的流程一样分为两部分,这次也是第一部分将会带大家跑通baseline(比赛的话可能会对比多个,这里仅跑YOLO v3),第二部分将会分析baseline出现的问题结合赛题背景进行改进...原创 2020-02-19 22:45:42 · 4697 阅读 · 25 评论 -
Batch Normalization本质:平滑优化空间
相信BN层对大家来说并不陌生,今天除了讲解BN被大家说的比较多的东西外会讲一下BN真正work的本质。今天之所以来讲解BN是因为早上听了一个旷视的讲座,听完之后发现旷视研究院在今年1月19日发表的用来解决小批量训练BN不稳定的问题论文:MABN。这对于一般用自己电脑来训练网络的我来说感觉是一个福音,可以减缓batch_size设小之后性能降低的问题(谷歌在一个月前也提出了改进的FRN:一种不依赖...原创 2020-02-15 19:49:18 · 488 阅读 · 0 评论 -
ICLR20 - 旷视研究院提出MABN:解决小批量训练BN不稳定的问题
本次先大体翻译MABN的论文,有机会我会把YOLO中的BN换成MABN在小批次上试试效果。目录背景介绍批归一化中的统计量滑动平均批归一化实验论文地址背景批度归一化(Batch Normalization/BN已经成为深度学习领域最常用的技术之一,但他的表现很受批次(Batch Size)限制。小批次样本的批统计量(Batch Statistics)十分不稳定,导致训练的...原创 2020-02-15 19:48:02 · 380 阅读 · 0 评论 -
CVPR2016:ResNet 从根本上解决深度网络退化问题
深度残差网络(Deep residual network, ResNet)的提出是CNN图像史上的一件里程碑事件,在2015年提出的时候便取得了五项第一,而何恺明大神也凭借这一paper斩获CVPR 2016 Best Paper Honorable Mention。目录背景(深度网络的退化问题)残差结构残差结构起作用的原因网络结构实验结果论文地址背景(深度网络的退化问题)...原创 2020-02-14 12:29:01 · 2488 阅读 · 1 评论 -
CVPR2019:使用GIoU作为目标检测新loss
如今一些目标检测算法如YOLO v3已经都在用GIOU代替IOU进行损失计算并取得不错的效果,GIOU的思路简单而有效,今天我们就来解读一下CVPR19的这篇Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression提出的广义IoU-GIoU目录背景及介绍算法流程及代码实验结...原创 2020-02-11 17:18:37 · 416 阅读 · 0 评论 -
目标检测之YOLO v1-You Only Look Once(一)
提到计算机视觉,自然会提到目标检测(object detection),而谈到目标检测,YOLO系列算法算是目标检测中2016年起燃起的一颗新星,接下来笔者将会挨个介绍YOLO这个家族中各个算法,本文则从CVPR2016的这篇You Only Look Once: Unified, Real-Time Object Detection介绍YOLO v1的论文说起。先上YOLO的官方演示demo:...原创 2020-02-11 17:18:38 · 695 阅读 · 0 评论 -
ICCV2017:Focal Loss for Dense Object Detection
这篇有关Focal Loss的paper是何恺明大神提出的又一经典paper,除了提出Focal Loss还提出了RetinaNet,这里就先不对RetinaNet做介绍,单纯讲讲Focal Loss目录背景简单介绍核心思想论文背景我们知道目标检测的算法主要可以分为两大类:two-stage和one-stage。前者的代表算法是R-CNN系列,可以达到很高的准确率,但是速度...原创 2020-02-11 17:18:12 · 241 阅读 · 0 评论 -
目标检测之YOLO v3-You Only Look Once(三)
提到计算机视觉,自然会提到目标检测(object detection),而谈到目标检测,YOLO系列算法算是目标检测中2016年起燃起的一颗新星,接下来笔者将会挨个介绍YOLO这个家族中各个算法,本文则从CVPR2016的这篇You Only Look Once: Unified, Real-Time Object Detection介绍YOLO v1的论文说起。先上YOLO的官方演示demo:...原创 2020-01-30 11:11:56 · 728 阅读 · 0 评论 -
目标检测之YOLO v2-You Only Look Once(二)
目录前言YOLO v2:Better,FasterYOLO9000:Stronger参考文献前言今天给大家介绍斩获CVPR 2017 Best Paper Honorable Mention的YOLO v2的论文,YOLO9000:Better, Faster, Stronger。准确来说这篇论文提出了两个模型:YOLO v2和YOLO9000,本篇论文主要的工作可以概括为2步:...原创 2020-01-31 15:43:03 · 625 阅读 · 0 评论