自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

CristianoC

分享计算机视觉路上所学所得

原创 YOLO v3实战之钢筋数量AI识别(一)

本次的YOLO v3实战是基于DataFountain的一个比赛:智能盘点—钢筋数量AI识别,baseline model就选用上次讲解YOLO v3理论YunYang复现的YOLO v3。本次系列也和正常我们做比赛的流程一样分为两部分,这次也是第一部分将会带大家跑通baseline(比赛的话可能...

2020-02-19 22:45:42

阅读数 4

评论数 0

原创 Tensorflow1.X迁移到2.0教程

最近发现tf升级2.0之后有些api更新了,所以代码就无法直接迁移,所以做一下记录。 目录 单脚本转换 文件夹批量转换 注意事项 单脚本转换 先进入到你要转换脚本(eg:yolov3.py)的目录,然后: tf_upgrade_v2 --infile yolov3.py --outfil...

2020-02-19 17:30:36

阅读数 5

评论数 0

原创 Batch Normalization本质:平滑优化空间

相信BN层对大家来说并不陌生,今天除了讲解BN被大家说的比较多的东西外会讲一下BN真正work的本质。今天之所以来讲解BN是因为早上听了一个旷视的讲座,听完之后发现旷视研究院在今年1月19日发表的用来解决小批量训练BN不稳定的问题论文:MABN。这对于一般用自己电脑来训练网络的我来说感觉是一个福音...

2020-02-15 19:49:18

阅读数 61

评论数 0

原创 ICLR20 - 旷视研究院提出MABN:解决小批量训练BN不稳定的问题

本次先大体翻译MABN的论文,有机会我会把YOLO中的BN换成MABN在小批次上试试效果。 目录 背景 介绍 批归一化中的统计量 滑动平均批归一化 实验 论文地址 背景 批度归一化(Batch Normalization/BN已经成为深度学习领域最常用的技术之一,但他的表现很受批次(Bat...

2020-02-15 19:48:02

阅读数 15

评论数 0

原创 CVPR2016:ResNet 从根本上解决深度网络退化问题

深度残差网络(Deep residual network, ResNet)的提出是CNN图像史上的一件里程碑事件,在2015年提出的时候便取得了五项第一,而何恺明大神也凭借这一paper斩获CVPR 2016 Best Paper Honorable Mention。 目录 背景(深度网络的退...

2020-02-14 12:29:01

阅读数 76

评论数 0

原创 目标检测之YOLO v1-You Only Look Once(一)

提到计算机视觉,自然会提到目标检测(object detection),而谈到目标检测,YOLO系列算法算是目标检测中2016年起燃起的一颗新星,接下来笔者将会挨个介绍YOLO这个家族中各个算法,本文则从CVPR2016的这篇You Only Look Once: Unified, Real-Ti...

2020-02-11 17:18:38

阅读数 80

评论数 0

原创 CVPR2019:使用GIoU作为目标检测新loss

如今一些目标检测算法如YOLO v3已经都在用GIOU代替IOU进行损失计算并取得不错的效果,GIOU的思路简单而有效,今天我们就来解读一下CVPR19的这篇Generalized Intersection over Union: A Metric and A Loss for Bounding ...

2020-02-11 17:18:37

阅读数 29

评论数 0

原创 ICCV2017:Focal Loss for Dense Object Detection

这篇有关Focal Loss的paper是何恺明大神提出的又一经典paper,除了提出Focal Loss还提出了RetinaNet,这里就先不对RetinaNet做介绍,单纯讲讲Focal Loss 目录 背景 简单介绍 核心思想 论文 背景 我们知道目标检测的算法主要可以分为两大类:t...

2020-02-11 17:18:12

阅读数 13

评论数 0

原创 目标检测之YOLO v2-You Only Look Once(二)

目录 前言 YOLO v2:Better,Faster YOLO9000:Stronger 参考文献 前言 今天给大家介绍斩获CVPR 2017 Best Paper Honorable Mention的YOLO v2的论文,YOLO9000:Better, Faster, Stronger。...

2020-01-31 15:43:03

阅读数 75

评论数 0

原创 目标检测之YOLO v3-You Only Look Once(三)

提到计算机视觉,自然会提到目标检测(object detection),而谈到目标检测,YOLO系列算法算是目标检测中2016年起燃起的一颗新星,接下来笔者将会挨个介绍YOLO这个家族中各个算法,本文则从CVPR2016的这篇You Only Look Once: Unified, Real-Ti...

2020-01-30 11:11:56

阅读数 97

评论数 0

原创 Policy Gradient——一种不以loss来反向传播的策略梯度方法

目录 文章目录目录1.前言2.核心算法3.Add a Baseline4.总结 1.前言 这次介绍的基于策略梯度的Policy Gradient的算法属实比之前的算法没那么好理解,笔者看完莫烦教程之后还是有许多细节没搞懂,又看了李宏毅教授的DRL Lecture才弄懂,希望能把他讲清楚。 2.核...

2019-07-25 16:51:47

阅读数 28

评论数 0

原创 Dueling DQN—一种简单有效提高DQN效果的方法

目录 文章目录目录1.前言2.算法2.1Dueling 算法2.2 更新方法3.对比结果 1.前言 关于DQN我们还会讲最后一种升级办法,我们只需要稍微改动DQN中的神经网络的结构,就能大幅提升学习效果,加速收敛,这种新方法叫做Dueling DQN。用一句话概括Dueling DQN就是:它将每...

2019-07-24 15:12:13

阅读数 371

评论数 0

原创 Prioritized Experience Replay (DQN)——让DQN变得更会学习

目录 文章目录目录1.前言2.算法2.1 SumTree有效抽样2.2 Memory类2.3 更新方法3.对比结果 1.前言 这次我们还是使用MountainCar来进行实验,因为这次我们不需要重度改变它的reward了。所以只要是没有拿到小旗子reward=-1,拿到小旗子时,我们定义它获得了+...

2019-07-24 10:30:53

阅读数 150

评论数 0

原创 Double DQN——解决DQN中的过估计问题

文章目录1.前言2.算法2.1更新方法2.2 记录Q值2.3对比结果 1.前言 本篇教程是基于Deep Q network(DQN)的教程,缩减了在DQN方面的介绍,着重强调Double DQN和DQN的不同之处。 接下来我们说说为什么会有Double DQN这种算法,所以我们从Double DQ...

2019-07-23 09:35:56

阅读数 195

评论数 0

原创 周志华《机器学习》学习笔记(2)——性能度量

说是学习笔记二,其实上一次的介绍已经把部分第二章模型评估与选择的内容介绍了一些,这次主要是对第二章剩余知识的理解,包括:性能度量、比较检验和偏差和方差。在上一篇中,我们解决了评估学习器泛化性能的方法,即用测试集的“测试误差”作为“泛化误差“的近似,当我们划分好训练/测试集后,那如何计算”测试误差“...

2019-07-22 21:35:42

阅读数 79

评论数 0

原创 Ubuntu下的录GIF神器——Peek

最近一直在找Ubuntu下面录GIF好用方便的软件一直没找到,很多都是要获取录屏四角的坐标,现在终于找到了,就是我们的录GIF神器——Peek。 1 获取Peek的ppa源 sudo add-apt-repository ppa:peek-developers/stable 2 更新源 sudo...

2019-07-22 10:28:05

阅读数 57

评论数 0

原创 OpenAI gym——一款开发和比较RL算法的工具包

文章目录一、前言二、安装三、CartPole例子主循环四、MountainCar例子 一、前言 手动编写环境是一件很耗时间的事情,所以如果可以直接使用比人编写好的环境,可以节约我们很多时间。OpenAI gym就是这样一个模块,他提供给我们很多优秀的模拟环境。我们的各种强化学习算法都能使用这些环境...

2019-07-22 10:02:36

阅读数 80

评论数 0

原创 周志华《机器学习》笔记(1)-绪论

文章目录1 绪论1.1 机器学习定义1.2 机器学习的一些基本术语2 模型的评估与选择2.1 误差与过拟合2.2 评估方法2.3 训练集与测试集的划分方法2.3.1 留出法2.3.2 交叉验证法2.3.3 自助法2.4调参 1 绪论 傍晚小街路面上沁出微雨后的湿润,和煦的细风吹来,抬头看看天边的晚...

2019-07-21 21:29:42

阅读数 18

评论数 0

原创 深度强化学习之DQN实战

今天我们会将我们上一篇文章讲解的DQN的理论进行实战,实战的背景目前仍然是探险者上天堂游戏,不过在下一次开始我们会使用OpenAI gym的环境库,玩任何我们想玩的游戏。 算法公式 看上去整个算法似乎很复杂,其实就是Q-Learning的框架加了三样东西 experience replay(经...

2019-07-21 11:59:49

阅读数 63

评论数 0

原创 深度强化学习之DQN-深度学习与强化学习的成功结合

目录 概念 深度学习与强化学习结合的问题 DQN解决结合出现问题的办法 DQN算法流程 总结 一、概念 原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是...

2019-07-20 17:04:56

阅读数 280

评论数 0

原创 Sarsa(Lambda)-Sarsa的升级版

目录 前言 单步更新和回合更新 算法公式 探险者上天堂实战 小结 前言 今天介绍的Sarsa(lambda)算法是Sarsa的改进版,二者的主要区别在于: Sarsa是每次获取到reward之后只更新到reward的前一步,而Sarsa(lambda)就是更新获取到reward的前lambd...

2019-07-19 16:55:24

阅读数 19

评论数 0

原创 强化学习之Sarsa

在强化学习中,Sarsa和Q-Learning很类似,本次内容将会基于之前所讲的Q-Learning的内容。 目录 算法简介 更新准则 探险者上天堂实战 算法简介 Sarsa决策部分和Q-Learning一抹一样,都是采用Q表的方式进行决策,所以我们会在Q表中挑选values比较大的动作实施...

2019-07-18 20:56:39

阅读数 41

评论数 0

原创 强化学习之Q——learning

部分专有名词在上一篇文章有介绍,本文不作过多赘述。 目录 前言 算法思想 算法详解 算法公式 探险者寻宝藏实战(一维) 前言 我们做事情都会有自己的一个行为准则,比如小时候爸妈常说“不写完作业就不准看电视”。所以我们在写作业的状态(state)下,好的行为就是继续写作业,直到写完它,我们还可...

2019-07-17 16:20:06

阅读数 90

评论数 0

原创 强化学习-让机器自学习

目录 概念 和监督学习,非监督学习的区别 分类 应用举例 概念 强化学习(Reinforcement Learning,简称RL)是机器学习的一个重要分支,前段时间人机大战的主角AlphaGo正是以强化学习为核心技术击败人类。在强化学习中,包含两种最基本的元素:状态与动作,在某个状态下执行某种...

2019-07-16 10:59:07

阅读数 200

评论数 0

原创 394 encoded_string(字符串解码)

题目 给定一个经过编码的字符串,返回它解码后的字符串。 编码规则为: k[encoded_string],表示其中方括号内部的 encoded_string 正好重复 k 次。注意 k 保证为正整数。 你可以认为输入字符串总是有效的;输入字符串中没有额外的空格,且输入的方括号总是符合格式要求的。 ...

2019-07-15 23:09:22

阅读数 13

评论数 0

原创 1-Two Sum

1 经典two_Sum问题 问题: 给定一个整数数组nums和一个目标值target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。 示例:给定 nums = [2, 7, 11, 15], targe...

2019-07-14 21:17:25

阅读数 9

评论数 0

原创 20-Valid Parentheses(有效的括号)

题目 给定一个只包括 ‘(’,’)’,’{’,’}’,’[’,’]’ 的字符串,判断字符串是否有效。有效字符串需满足: 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合。 注意空字符串可被认为是有效字符串。 示例 1: 输入: “()” 输出: true 示例 2: 输入: “(...

2019-07-14 21:15:57

阅读数 7

评论数 0

提示
确定要删除当前文章?
取消 删除