G-S迭代法

该代码实现了一个使用雅可比迭代法解决Ax=b线性方程组的MATLAB函数。函数接受矩阵A、向量b、初始解X0、迭代距离阈值detx和最大迭代次数maxN作为输入参数。在每次迭代中,它更新变量X直到满足终止条件或达到最大迭代次数。如果超过最大迭代次数还未收敛,程序会给出警告信息。
摘要由CSDN通过智能技术生成
function X=gsdd(A,b,X0,detx,maxN)
%A,b为方程组Ax=b中的矩阵A和矢量b
%X0为x的初始值
%detx为迭代终止条件,若两次迭代X的距离(2范数)小于detx,则停止迭代
%maxN为最大迭代次数,若经过maxN次迭代仍不收敛,则停止迭代
[~, m]=size(A);
X=X0;
for k=1:maxN
    for j=1:m
        if j==1
            X(1)=(b(1)-sum(A(1,2:m).* X(2:m)'))/ A(1,1);
        elseif j==m
            X(m)=(b(m)-sum(A(m,1:m-1).* X(1:m-1)'))/A(m,m);
        else
            X(j)=(b(j)-sum(A(j,1:j-1).*X(1:j-1)')-sum(A(j,j+1:m).*X(j+1:m)'))/ A(j,j);
        end
    end
    djwcX=norm(X'-X0);
    xdwcX=djwcX/(norm(X')+eps);
    X0=X';
    if (djwcX <detx)&&(xdwcX <detx)
        times = j;
        disp(times);
        return
    end
end
if (djwcX>detx)&&(xdwcX>detx)
    disp('雅可比迭代次数已经超过最迭代次数maxN')
end

举例应用:

A=[27 6 -1;6 15 2;1 1 54];

>> b=[85;5;110];

>> X0=[0;0;0];

>> detx=0.00001;

>> maxN=20;

>> X=gsdd(A,b,X0,detx,maxN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值