- 博客(7)
- 收藏
- 关注
原创 树遍历及其应用场景(前序,中序,后序)
观点引用自:https://www.zhihu.com/question/22031935/answer/153859490作者:Entronad1. 前序遍历:public void preorder(TreeNode node) { // base case if (node == null) return; // body System.out.println(node.val); preorder(node.left); preorder(node.right);}第一次
2020-08-11 23:12:13 1204
原创 绝对误差限 & 导数
绝对误差限 & 导数1. 结论:对函数f(x)f(x)f(x)在x′x'x′处使用泰勒展开: f(x)=f(x′)+f′(x′)(x−x′)+o(x−x′)f(x) = f(x') + f'(x')(x-x') + o(x-x')f(x)=f(x′)+f′(x′)(x−x′)+o(x−x′)于是:∣f(x)−f(x′)∣=∣f′(x′)(x−x′)+o(x−x′)∣≤∣f′(x′)∣⋅e(x)+o(e(x))|f(x) - f(x')| = |f'(x')(x-x') + o(x-x')| \
2020-05-23 18:12:22 4531
原创 插值的若干证明
插值的若干证明(一) P145, (6.8)若 ωn+1(x)=(x−x0)(x−x1)⋯(x−xn)\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_n)ωn+1(x)=(x−x0)(x−x1)⋯(x−xn)则 ωn+1′(xk)=(xk−x0)(xk−x1)⋯(xk−xk−1)(xk−xk+1)⋯(xk−xn)\omega_{n+1}'(x_k) = (x_k - x_0)(x_k - x_1)\cdots(x_k-x_{k-1})(x_k - x_{k
2020-05-16 19:58:05 379
原创 J迭代和GS迭代的矩阵方程形式
Jacobi迭代和Gauss-Seidel迭代的矩阵方程形式给定线性方程组:Ax=bAx = bAx=b将矩阵AAA分解为:A=D−L−UA = D-L-UA=D−L−U其中:A=[a11a22a33⋱ann],−L=[0a210a31a320⋮⋮⋱⋱an1an2⋯ann−10],−U=[0a12a13⋯a1n0a23⋯a2n⋱⋱⋮⋱an−1n0]A = \left[ \begin{matrix} a_{11}\\ & a_{22}\\ && a_{33}\
2020-05-16 19:56:45 5872 1
原创 矩阵1,2,infty,F范数延伸
矩阵1,2,∞,F1,2,\infty,F1,2,∞,F范数延伸矩阵1-范数推导∣∣A∣∣1=maxx≠0∣∣Ax∣∣1∣∣x∣∣1:||A||_1 = \max\limits_{x\ne 0}\frac{||Ax||_1}{||x||_1}:∣∣A∣∣1=x=0max∣∣x∣∣1∣∣Ax∣∣1:令:A=(a1,a2,⋯ ,an)∈Rm×n,x=(x1,x2,⋯ ,xn)∈Rn,其中∣∣x∣∣1=1A = (a_1, a_2, \cdots, a_n)\in R^{m\times n}
2020-05-16 19:49:15 768
原创 范数概念以及相关推导
范数向量范数常见范数p范数(p = 1, 2, ∞\infty∞, ⋯\cdots⋯): ∣∣x∣∣p=(∑i=1n∣xi∣p)1p||x||_p = (\sum\limits_{i=1}^{n}|x_i|^p)^{\frac{1}{p}}∣∣x∣∣p=(i=1∑n∣xi∣p)p10范数:向量中非0分量的个数(用来衡量稀疏度)定义:向量范数设∣∣⋅∣∣||\cdot||∣∣⋅∣∣是向量空间RnR^nRn上的实值函数,且满足条件:非负性:$||\cdot||\geq0 $ ,且
2020-05-16 19:46:40 5650 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人