很有意思的一个智力题。
题目 :
一个农夫借给他的的邻居机械工40磅的重物。遗憾的是,机械工不小心把重物摔成了四份。不过值得高兴的是,机械工说,使用这四分可以在天平上称出0-40磅的任何重物。问每份的重物是多少?
这个在数学上叫做梅氏砝码问题,其叙述如下:
若有n个砝码,重量分别为M1,M2,……,Mn,且能称出从1到(M1+M2+……+Mn)的所有重量,则再加一个砝码,重量为Mn+1=(M1+M2+……+Mn)*2+1,则这n+1个砝码能称出从1到
(M1+M2+……+Mn+Mn+1)的所有重量。
解决思路 :
1克的法码是无论如何要用的
其次需要准备的法码设为x克,就可以称x+1克和x-1克。由于x-1克是在1克的基础上继续加1克的重量所以 x-1=1+1 ,即 x=3 。根据上式可以称出 1、2=3-1、3、4=3+1克。
把要准备的第三个法码社为y克,由于第二个法码可以称到4克,所以又可以称y-4、y-3、y-2、y-1、y、y+1、y+2、y+3、y+4克的重量。由于y-4是在4克的基础上继续加1克的重量,所以 y-4=4+1。即 y=9。因此可以称出1、2=3-1、3、4=3+1、5=9-(1+3)、6=9-3、7=9+1-3、8=9-1、9、10=1+9、11=3+9- 1、12=3+9、13=1+3+9 。
再把要准备的第四个法码设为z克,可以称从z-13到z+13。和前面一样、z-13=13+1 ,所以 z=27。因此可以称出到40克的重量了。
也就是说、只要分别准备1、3、9(=3的平方)、27(=3的立方)克4种法码,就可以称出从1克到40克、每一次加1克的重量。
至于程序嘛。。。有空再写喽。。。
题目 :
一个农夫借给他的的邻居机械工40磅的重物。遗憾的是,机械工不小心把重物摔成了四份。不过值得高兴的是,机械工说,使用这四分可以在天平上称出0-40磅的任何重物。问每份的重物是多少?
这个在数学上叫做梅氏砝码问题,其叙述如下:
若有n个砝码,重量分别为M1,M2,……,Mn,且能称出从1到(M1+M2+……+Mn)的所有重量,则再加一个砝码,重量为Mn+1=(M1+M2+……+Mn)*2+1,则这n+1个砝码能称出从1到
(M1+M2+……+Mn+Mn+1)的所有重量。
解决思路 :
1克的法码是无论如何要用的
其次需要准备的法码设为x克,就可以称x+1克和x-1克。由于x-1克是在1克的基础上继续加1克的重量所以 x-1=1+1 ,即 x=3 。根据上式可以称出 1、2=3-1、3、4=3+1克。
把要准备的第三个法码社为y克,由于第二个法码可以称到4克,所以又可以称y-4、y-3、y-2、y-1、y、y+1、y+2、y+3、y+4克的重量。由于y-4是在4克的基础上继续加1克的重量,所以 y-4=4+1。即 y=9。因此可以称出1、2=3-1、3、4=3+1、5=9-(1+3)、6=9-3、7=9+1-3、8=9-1、9、10=1+9、11=3+9- 1、12=3+9、13=1+3+9 。
再把要准备的第四个法码设为z克,可以称从z-13到z+13。和前面一样、z-13=13+1 ,所以 z=27。因此可以称出到40克的重量了。
也就是说、只要分别准备1、3、9(=3的平方)、27(=3的立方)克4种法码,就可以称出从1克到40克、每一次加1克的重量。
至于程序嘛。。。有空再写喽。。。