Description
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个区间[a,b],S(a,b) = miu(a) + miu(a + 1) + …… miu(b)。
例如:S(3, 10) = miu(3) + miu(4) + miu(5) + miu(6) + miu(7) + miu(8) + miu(9) + miu(10)= -1 + 0 + -1 + 1 + -1 + 0 + 0 + 1 = -1。
Solution
觉得和之前做的一道51nod 1239 欧拉函数之和很像,同样有以下性质:
(n=1)∑d|nμ(i)==1
(n>1)∑d|nμ(i)==0
然后这道题就好解了。
f(n)=∑i=1nμ(i)=∑i=1n∑d|iμ(i)−∑i=1n∑d|i,d<iμ(i)
好像一句废话……
f(n)=∑i=1n∑d|iμ(i)−∑i=1n∑d|i,d<iμ(i)=1−∑i=1n∑d|i,d<iϕ(i)
设T=id,因为要满足d|i,d<i,所以T>1且为整数
f(n)=1−∑T=2n∑d=1n/Tμ(⌊nd⌋)=1−∑T=2nf(⌊nd⌋)
最后分块一下,用哈希表判重就好了。但是,这还是不行,我们还要预处理一下前10^6的答案,这样就解决了。
Code
#include<iostream>
#include<math.h>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#define ll long long
using namespace std;
const ll maxn=7.8e6+5,maxn1=1e6+5;
int f[maxn],bz[maxn1+5],d[maxn1],p[maxn+5];
ll h[maxn],n,i,t,j,k,l,x,y,z,ans;
int hash(ll x){
ll t=x%maxn;
while (h[t]&& h[t]!=x) t=(t+1)%maxn;
return t;
}
int dg(ll n){
if (n<=maxn1) return p[n];
ll i=2,t;int k=1,l=hash(n);
if (h[l]) return f[l];
while (i<=n){
t=n/(n/i);
k=k-(t-i+1)*dg(n/i);i=t+1;
}
h[l]=n;f[l]=k;return k;
}
int main(){
//freopen("data.in","r",stdin);
p[1]=1;
for (i=2;i<=maxn1;i++){
if (!bz[i]) d[++d[0]]=i,p[i]=-1;
for (j=1;j<=d[0];j++){
if (i*d[j]>maxn1) break;
bz[i*d[j]]=1;
if (i%d[j]==0) break;
else p[i*d[j]]=-p[i];
}
}
for (i=1;i<=maxn1;i++)
p[i]+=p[i-1];
scanf("%lld%lld",&x,&y);
ans=dg(y)-dg(x-1);
printf("%lld\n",ans);
}