【51nod 1244】 莫比乌斯函数之和

18 篇文章 0 订阅
5 篇文章 0 订阅

Description

莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。

给出一个区间[a,b],S(a,b) = miu(a) + miu(a + 1) + …… miu(b)。
例如:S(3, 10) = miu(3) + miu(4) + miu(5) + miu(6) + miu(7) + miu(8) + miu(9) + miu(10)= -1 + 0 + -1 + 1 + -1 + 0 + 0 + 1 = -1。

Solution

觉得和之前做的一道51nod 1239 欧拉函数之和很像,同样有以下性质:

(n=1)d|nμ(i)==1

(n>1)d|nμ(i)==0

然后这道题就好解了。
f(n)=i=1nμ(i)=i=1nd|iμ(i)i=1nd|i,d<iμ(i)
好像一句废话……
f(n)=i=1nd|iμ(i)i=1nd|i,d<iμ(i)=1i=1nd|i,d<iϕ(i)
T=idd|i,d<iT>1
f(n)=1T=2nd=1n/Tμ(nd)=1T=2nf(nd)
最后分块一下,用哈希表判重就好了。但是,这还是不行,我们还要预处理一下前10^6的答案,这样就解决了。

Code

#include<iostream>
#include<math.h>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#define ll long long
using namespace std; 
const ll maxn=7.8e6+5,maxn1=1e6+5;
int f[maxn],bz[maxn1+5],d[maxn1],p[maxn+5];
ll h[maxn],n,i,t,j,k,l,x,y,z,ans;
int hash(ll x){
    ll t=x%maxn;
    while (h[t]&& h[t]!=x) t=(t+1)%maxn;
    return t;
}
int dg(ll n){
    if (n<=maxn1) return p[n];
    ll i=2,t;int k=1,l=hash(n);
    if (h[l]) return f[l];
    while (i<=n){
        t=n/(n/i);
        k=k-(t-i+1)*dg(n/i);i=t+1;
    }
    h[l]=n;f[l]=k;return k;
}
int main(){
    //freopen("data.in","r",stdin);
    p[1]=1;
    for (i=2;i<=maxn1;i++){
        if (!bz[i]) d[++d[0]]=i,p[i]=-1;
        for (j=1;j<=d[0];j++){
            if (i*d[j]>maxn1) break;
            bz[i*d[j]]=1;
            if (i%d[j]==0) break;
            else p[i*d[j]]=-p[i];
        }
    }
    for (i=1;i<=maxn1;i++)
        p[i]+=p[i-1];
    scanf("%lld%lld",&x,&y);
    ans=dg(y)-dg(x-1);
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值