c莫比乌斯函数_51nod 1244 莫比乌斯函数之和 【莫比乌斯函数+杜教筛】

和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\mu(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下: $$ g(n)=\sum_{i=1}^{n}\sum_{d|n}\mu(d) $$ $$ =\sum_{d=1}^{n}\mu(d)\left \lfloor \frac{n}{d} \right \rfloor $$ $$ =\sum_{d=1}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor) $$ $$ s(n)=g(n)-\sum_{d=2}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor) $$ 然后递归求解即可。

#include

#include

#include

using namespace std;

const long long N=5000005,m=4500000;

long long mb[N],tot,q[N],p[N];

long long l,r;

bool v[N];

long long getp(long long x,long long n)

{

return (x<=m)?mb[x]:p[n/x];

}

void slv(long long x,long long n)

{

if(x<=m)

return;

long long t=n/x;

if(v[t])

return;

v[t]=1;

p[t]=1;

for(long long i=2,la;la

{

la=x/(x/i);

slv(x/i,n);

p[t]-=getp(x/i,n)*(la-i+1);

}

}

long long wk(long long n)

{

if(n<=m)

return mb[n];

memset(v,0,sizeof(v));

slv(n,n);

return p[1];

}

int main()

{

mb[1]=1;

for(long long i=2;i<=m;i++)

{

if(!v[i])

{

q[++tot]=i;

mb[i]=-1;

}

for(long long j=1;j<=tot&&i*q[j]<=m;j++)

{

long long k=i*q[j];

v[k]=1;

if(i%q[j]==0)

{

mb[k]=0;

break;

}

mb[k]=-mb[i];

}

}

for(long long i=1;i<=m;i++)

mb[i]+=mb[i-1];

scanf("%lld%lld",&l,&r);

printf("%lld\n",wk(r)-wk(l-1));

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值