和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\mu(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下: $$ g(n)=\sum_{i=1}^{n}\sum_{d|n}\mu(d) $$ $$ =\sum_{d=1}^{n}\mu(d)\left \lfloor \frac{n}{d} \right \rfloor $$ $$ =\sum_{d=1}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor) $$ $$ s(n)=g(n)-\sum_{d=2}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor) $$ 然后递归求解即可。
#include
#include
#include
using namespace std;
const long long N=5000005,m=4500000;
long long mb[N],tot,q[N],p[N];
long long l,r;
bool v[N];
long long getp(long long x,long long n)
{
return (x<=m)?mb[x]:p[n/x];
}
void slv(long long x,long long n)
{
if(x<=m)
return;
long long t=n/x;
if(v[t])
return;
v[t]=1;
p[t]=1;
for(long long i=2,la;la
{
la=x/(x/i);
slv(x/i,n);
p[t]-=getp(x/i,n)*(la-i+1);
}
}
long long wk(long long n)
{
if(n<=m)
return mb[n];
memset(v,0,sizeof(v));
slv(n,n);
return p[1];
}
int main()
{
mb[1]=1;
for(long long i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
mb[i]=-1;
}
for(long long j=1;j<=tot&&i*q[j]<=m;j++)
{
long long k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
for(long long i=1;i<=m;i++)
mb[i]+=mb[i-1];
scanf("%lld%lld",&l,&r);
printf("%lld\n",wk(r)-wk(l-1));
return 0;
}