题解 [CQOI2017] 老 C 的方块

这题我们教练出的。

Sto nodgd Orz

一般来说,看到网格题,想到网络流。看到要炸点,考虑染色,这道题的四个形状都是四个格子,考虑染成四色(图片来自 shadowice1984
的题解
):

那么我们再观察符合条件的讨厌图形,会发现有且仅有这四种由四个块组成图形必然存在一种顺序是黄-红-黑线-蓝-绿

那我们想一下,怎样才能破坏一个讨厌图形呢?两种方式:

  • 破坏掉一个红/蓝方块
  • 破坏掉所有和红色或者蓝色相邻的黄块或者绿块

到这里已经有一些最小割的影子了,我们按颜色可以建图建成 7 7 7 层,分别是源点,黄色,红色,黑线,蓝色,绿色,汇点。

然后考虑如何去连边,显然“摧毁掉所有讨厌图形”也就是“使得源点和汇点不连通”:

  • 我们从源点向黄色块连容量就是这个黄色块消除代价的边。
  • 黄色块向红色块连容量为 inf ⁡ \inf inf 的边。
  • 红色块向黑色线连容量就是这个红色块消除代价的边。
  • 黑色线向蓝色点连容量就是这个蓝色块消除代价的边。

之后几层同理。

但是注意了,我在这里说黑色线只是帮助大家思考,事实上很容易发现我们从红块向蓝块连两者容量最小值是等价于红-黑-蓝的,于是黑色就去死了。

然后跑最小割,基于上面的分析,这就是答案。

代码实现有点难写,我也自认为写的比较简单,所以放一下代码:

#include<bits/stdc++.h>
#define inf 15000000000000ll 
using namespace std;
#define int long long 
const int maxn=1e7;
struct Edge{
    int v,w,nxt;
}e[maxn];
map<int,map<int,int> >id;
map<int,map<int,int> >cst;
int h[maxn],tot=1,dis[maxn],N,cnt[maxn],u[maxn],v[maxn],b,f[300][300],sc=0,c,r;
int n=0,tt=0,m=0; 
void add(int u,int v,int w){  
	tot++;
    e[tot].v=v;
    e[tot].w=w;
    e[tot].nxt=h[u];
    h[u]=tot;
} 
void ae(int u,int v,int w){
//	cout<<u<<" "<<v<<" "<<w<<endl;
	add(u,v,w);
	add(v,u,0);
}
queue<int>q;
int wc(int x,int y){//1 R 2 B 3 Y 4 G
	swap(x,y);
	y=r-y;
	if(x==1){
		return y%2==1?3:1;
	}
	x--;
	if(((x-1)/2+1)%2){
		return x%2?(y%2?4:2):(y%2?2:4);
	}
	else{
		return x%2?(y%2?1:3):(y%2?3:1);
	}
}
void BFS(int s,int t){
	for(int i=1;i<=t;i++){
		dis[i]=0;
		cnt[i]=0;
	}
	dis[t]=1;
	cnt[1]++;
    q.push(t);
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for (int i=h[u];i;i=e[i].nxt) {
            int v=e[i].v;
			if(!dis[v]) {
                dis[v]=dis[u]+1;
                cnt[dis[v]]++;
                q.push(v);
            }
        }
    }
}

int dfs(int x,int s,int t,int flow){
    if(x==t||!flow) 
	return flow;
    int flw=0;
    for(int i=h[x];i;i=e[i].nxt) {
        int v=e[i].v;
		if(dis[x]==dis[v]+1){
            int tmp=dfs(v,s,t,min(flow,e[i].w));
            flw+=tmp;
			flow-=tmp;
			e[i].w-=tmp;
			e[i^1].w+=tmp;
            if(!flow) 
			return flw;
        }
    }
    cnt[dis[x]]--;
    if(!cnt[dis[x]]){
    	dis[s]=N; 
	}
	dis[x]++;
	cnt[dis[x]]++;
    return flw; 
}
int ISAP(int s,int t){
	BFS(s,t);
	int flw=dfs(s,s,t,inf);
	while(dis[s]<=N){
	 	flw+=dfs(s,s,t,inf);
	}
	return flw;
}
struct node{
	int x,y,cost;
}bk[maxn];
bool cmp(node a,node b){
	return a.x!=b.x?a.x<b.x:a.y<b.y;
}
const int dx[]={-1,1,0,0};
const int dy[]={0,0,-1,1}; 
signed main(){ 
	ios::sync_with_stdio(0);
	cin>>c>>r>>n;
	N=n+2;
	int s=n+1;
	for(int i=1;i<=n;i++){
		cin>>bk[i].x>>bk[i].y>>bk[i].cost;
		swap(bk[i].x,bk[i].y);
		bk[i].x=r-bk[i].x+1;
//		bk[i].y=c-bk[i].y+1;
	}
	sort(bk+1,bk+n+1,cmp);
	for(int i=1;i<=n;i++){
//		cout<<"id"<<bk[i].x<<" "<<bk[i].y<<" "<<i<<endl;
		id[bk[i].x][bk[i].y]=i;
		cst[bk[i].x][bk[i].y]=bk[i].cost;
	}
//	cout<<"_"<<endl;
	for(int i=1;i<=n;i++){
		int x=bk[i].x,y=bk[i].y;
		if(wc(x,y)==4)
		ae(s,id[x][y],cst[x][y]);
		if(wc(x,y)==3)
		ae(id[x][y],N,cst[x][y]);
		for(int t=0;t<4;t++){
			int tx=x+dx[t],ty=y+dy[t];
			if(id[tx][ty]){
				if(wc(x,y)==2&&wc(tx,ty)==1){
					ae(id[x][y],id[tx][ty],min(cst[x][y],cst[tx][ty]));
				}
				if(wc(x,y)==3){
					if(wc(tx,ty)==1){
//						cout<<tx<<" "<<ty<<" color1"<<endl;
						ae(id[tx][ty],id[x][y],cst[x][y]);
					}
				}
				if(wc(x,y)==4){
					if(wc(tx,ty)==2){
						ae(id[x][y],id[tx][ty],inf);
					}
				}
			}
		}
	}
	cout<<ISAP(s,N)<<endl;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有 $n$ 个人,每个人有一个编号 $i$,每个人都跳舞,但是每个人都只会一种舞蹈。现在要求他们排成一个圆圈跳舞,使得相邻两个人跳的舞蹈不同。求方案数。 输入格式 一个整数 $n$。 输出格式 一个整数,表示方案数,由于答案可能很大,输出对 $10^9+7$ 取模的结果。 数据范围 $1\leq n\leq 10^5$ 输入样例1: 5 输出样例1: 20 输入样例2: 10 输出样例2: 14684570 算法 数学,组合数学,动态规划 思路 题目要求的是排成一个圆圈跳舞,而且相邻两个人跳舞的舞蹈不同,这就意味着最后一个人的舞蹈类型必须和第一个人不同。因为它们是相邻的。 如果我们考虑将最后一个人的舞蹈类型和第一个人不同的方案数,那么实际上就是将 $n$ 个人分成两组: - 第一组是前 $n-1$ 个人,需要满足相邻两个人跳舞的舞蹈不同。 - 第二组是第 $n$ 个人,需要满足和第一个人跳舞的舞蹈不同。 对于第一组,我们可以定义 $f[i]$ 表示前 $i$ 个人,最后一个人和第一个人跳舞的舞蹈类型不同的方案数。因为需要满足相邻两个人跳舞的舞蹈不同,所以有两种情况: - 如果第 $i$ 个人和第 $i-1$ 个人跳舞的舞蹈类型不同,那么最后一个人的舞蹈类型可以是除了第 $i-1$ 个人和第一个人外的所有舞蹈类型,即共有 $n-2$ 种选择。 - 如果第 $i$ 个人和第 $i-1$ 个人跳舞的舞蹈类型相同,那么最后一个人的舞蹈类型只能是第 $i-1$ 个人和第一个人的舞蹈类型中的一种,即共有 $2$ 种选择。 综上所述,递推式为: $$f[i]=\begin{cases} (n-2)\times f[i-1] + 2\times f[i-2], & a[i]\neq a[i-1] \\ (n-1)\times f[i-1], & a[i]=a[i-1] \end{cases}$$ 对于第二组,最后一个人的舞蹈类型只能是除了第一个人的所有舞蹈类型,即共有 $n-1$ 种选择。 因此我们可以得到最终的方案数: $$ans=(n-1)\times f[n-1]$$ 代码 时间复杂度 $O(n)$ 空间复杂度 $O(n)$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值