数据结构学习笔记:B-/B+树

本文详细介绍了B-树和B+树这两种数据结构,包括它们的查找、插入、删除操作。B-树适用于有序数据的存储,保持键值有序,便于磁盘读取。B+树则更适合作为文件索引系统,所有关键字都在叶子节点,并具有更优秀的磁盘I/O性能。文章还深入探讨了磁盘存取原理、预读策略以及B-/+Tree在数据库索引实现中的应用,特别是MySQL中MyISAM引擎如何利用B+Tree进行索引。
摘要由CSDN通过智能技术生成

B-树

B-树是一种非二叉的查找树,即一般化的BST,除了要满足查找树的特性外,还满足以下特性:
一棵m阶的B树:

  • 定义任意非叶子结点最多只有M个儿子;且M>2
  • 根结点的儿子数为[2, M];
  • 除根结点以外的非叶子结点的儿子数为[M/2, M];
  • 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  • 非叶子结点的关键字个数=指向儿子的指针个数-1;
  • 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  • 非叶子结点的指针:P[1], P[2], …, P[M];
    • 其中P[1]指向关键字小于K[1]的子树
    • P[M]指向关键字大于K[M-1]的子树
    • 其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  • 所有的叶子节点位于同一层

如,M = 3:
这里写图片描述

查找

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点。

  • 若比结点的K1小,则查找该结点P1指向的结点;
  • 若等于节点值,则查找成功,返回
  • 若在两个关键字之间,比如Ki-1与Ki,那么在Pi指向的节点中查找
  • 若比节点的所有关键字大,则在Pm指向的节点中查找
  • 若查找已经到达某个叶节点,则说明查找失败。

插入

  • 利用前述的B-树的查找算法查找关键字的插入位置。若找到,则说明该关键字已经存在,直接返回。
  • 判断该节点是否还有空位置,即判断该结点的关键字总数是否满足n<=m-1。若满足,则说明该结点还有空位置,直接把关键字k插入到该结点的合适位置上。若不满足,说明该结点己没有空位置,需要把结点分裂成两个。
  • 分裂的方法:生成一新结点。把原结点上的关键字和k按升序排序后,从中间位置把关键字(不包括中间位置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值