B-树
B-树是一种非二叉的查找树,即一般化的BST,除了要满足查找树的特性外,还满足以下特性:
一棵m阶的B树:
- 定义任意非叶子结点最多只有M个儿子;且M>2
- 根结点的儿子数为[2, M];
- 除根结点以外的非叶子结点的儿子数为[M/2, M];
- 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
- 非叶子结点的关键字个数=指向儿子的指针个数-1;
- 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
- 非叶子结点的指针:P[1], P[2], …, P[M];
- 其中P[1]指向关键字小于K[1]的子树
- P[M]指向关键字大于K[M-1]的子树
- 其它P[i]指向关键字属于(K[i-1], K[i])的子树;
- 所有的叶子节点位于同一层
如,M = 3:
查找
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点。
- 若比结点的K1小,则查找该结点P1指向的结点;
- 若等于节点值,则查找成功,返回
- 若在两个关键字之间,比如Ki-1与Ki,那么在Pi指向的节点中查找
- 若比节点的所有关键字大,则在Pm指向的节点中查找
- 若查找已经到达某个叶节点,则说明查找失败。
插入
- 利用前述的B-树的查找算法查找关键字的插入位置。若找到,则说明该关键字已经存在,直接返回。
- 判断该节点是否还有空位置,即判断该结点的关键字总数是否满足n<=m-1。若满足,则说明该结点还有空位置,直接把关键字k插入到该结点的合适位置上。若不满足,说明该结点己没有空位置,需要把结点分裂成两个。
- 分裂的方法:生成一新结点。把原结点上的关键字和k按升序排序后,从中间位置把关键字(不包括中间位置