假设系统的可利用内存空间容量为2m个字(地址从0到2m-1),则在开始运行时,整个内存区是一个大小为2m的空闲块,在运行了一段时间之后,被分隔成若干占用块和空闲块。为了在分配时查找方便起见,我们将所有大小相同的空闲块建于一张子表中。每个子表是一个双重链表,这样的链表可能有m+1个,将这m+1个表头指针用向量结构组织成一个表,这就是伙伴系统中的可利用空间表,如图所示:
分配算法:
当用户提出大小为n的内存请求时,首先在可利用表上寻找结点大小与n相匹配的子表,若此子表非空,则将子表中任意一个结点分配之即可;若此子表为空,则需从结点更大的非空子表中去查找,直至找到一个空闲块,则将其中一部分分配给用户,而将剩余部分插入相应的子表中。
若2k-1 < n ≤ 2k-1,又第k+1个子表不空,则只要删除此链表中第一个结点并分配给用户即可;若 2k-2 < n ≤ 2k-1-1,此时由于结点大小为2k-1 的子表为空,则需从结点大小为2k 的子表中取出一块,将其中一半分配给用户,剩余的一半作为一个新结点插入在结点大小为2k-1的子表中,若2k-i-1 < n ≤ 2k-i-1(i为小于是的整数),并且所有结点小于2k的子表均为空,则同样需从结点大小为2k的子表中取出一块,将其中2k-i的一小部分分配给用户,剩余部分分割成若干个结点分别插入在结点大小为2k-1 、 2k-2 、…、 2k-i的子表中。
回收算法:
在用户释放不再使用的占用块时,系统需将这新的空闲块插入到可利用空间表中去。这里,同样有一个地址相邻的空闲块归并成大块的问题。但是在伙伴系统中仅考虑互为“伙伴”的两个空闲块的归并。
何谓“伙伴”?如前所述,在分配时经常需要将一个大的空闲块分裂成两个大小相等的存储区,这两个由同一大块分裂出来的小块就称之“互为伙伴”。例如:假设p为大小为pow(2,k)的空闲块的初始地址,且p MOD pow(2,k+1)=0,则初始地址为p和p+pow(2,k)的两个空闲块互为伙伴。在伙伴系统中回收空闲块时,只当其伙伴为空闲块时才归并成大块。也就是说,若有两个空闲块,即使大小相同且地址相邻,但不是由同一大块分裂出来的,也不归并在一起。
由此,在回收空闲块时,应首先判别其伙伴是否为空闲块,若否,则只要将释放的空闲块简单插入在相应子表中即可;若是,则需在相应子表中找到其伙伴并删除之,然后再判别合并后的空闲块的伙伴是否是空闲块。依此重复,直到归并所得空闲块的伙伴不是空闲块时,再插入到相应的子表中去。
代码如下(只用了单链表):
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MIN_MOMORY_SIZE 536870912 //随机产生的最小内存空间:512M (最大为1G)
#define INDEX_SIZE 30 //哈希索引表大小
#define WORKTIME 1500 //系统工作时间
#define MAX_REQ_SIZE 268435456 //申请空闲内存分配的最大容量:256M
#define MIN_DUE 30 //使用内存块的最短时间
#define MAX_DUE 90 //使用内存块的最长时间
#define OCCUPY_INTERVAL 60 //每次分配的最大间隔
#define USED 1 //内存块被使用
#define UNUSED 0 //内存块未被使用
//内存块链表结点结构
typedef struct buddy_node {
int flag; //标记空间是否被使用
int base; //本块儿内存的基地址
int occupy; //实际使用空间大小
int fragment; //碎片大小
int duetime; //使用时间
struct buddy_node *nextPtr; //指向下一个结点
} Buddy, *BuddyPtr;
//哈希索引表结构
typedef struct hash_table {
int nodesize;
BuddyPtr headPtr;
} IndexTable;
IndexTable table[INDEX_SIZE];//使用哈希表管理伙伴系统
int ready = 0; //需要分配内存的时刻
int availSpace; //可分配空间大小
int totalFragment = 0; //总碎片大小
//函数:根据k的值计算哈希表项链接的内存块的大小
int get_size (int k)
{
int i, nodesize = 1;
for (i = 0; i < k; i ++)
nodesize *= 2;
return nodesize;
}
//函数:初始化哈希索引表
void ini_index (void)
{
int i;
for (i = 0; i < INDEX_SIZE; i ++) {
table[i].nodesize = get_size(i);
table[i].headPtr = NULL;
}
}
//函数:初始化伙伴系统
void int_system (int memory_size)
{
int i, addr = 0;
int left = memory_size;
BuddyPtr newnodePtr = NULL;
//初始化可分配空间大小和碎片大小
availSpace = memory_size;
totalFragment = 0;
//将内存分割成尽量大的2倍数的空闲块并插入到相应的索引表项中
for (i = INDEX_SIZE-1; left > 0; i --) {
if (left / table[i].nodesize == 1) {
newnodePtr = (BuddyPtr) malloc (sizeof (Buddy));//分配结点
newnodePtr->flag = UNUSED;
newnodePtr->base = addr;
newnodePtr->occupy = 0;
newnodePtr->fragment = 0;
newnodePtr->duetime = 0;
newnodePtr->nextPtr = NULL;
table[i].headPtr = newnodePtr;
addr += table[i].nodesize;
left -= table[i].nodesize;
}
}
}
//函数:程序运行结束后释放所有结点
void free_system (void)
{
int i;
BuddyPtr tempPtr = NULL, tofreePtr = NULL;
for (i = 0; i < INDEX_SIZE; i ++) {
if (table[i].headPtr) {
tempPtr = table[i].headPtr;
table[i].headPtr = NULL;
//依次释放所有结点
while (tempPtr) {
tofreePtr = tempPtr;
tempPtr = tempPtr->nextPtr;
free (tofreePtr);
}
}
}
}
//函数:添加结点(形参为内存块结点的信息)
void insert_node (int i, int inbase, int f, int occ, int frag, int d)
{
BuddyPtr newnodePtr = NULL, prePtr = NULL, curPtr = NULL;
newnodePtr = (BuddyPtr) malloc (sizeof (Buddy));//分配结点
newnodePtr->base = inbase;
newnodePtr->flag = f;
newnodePtr->occupy = occ;
newnodePtr->fragment = frag;
newnodePtr->duetime = d;
newnodePtr->nextPtr = NULL;
if (table[i].headPtr == NULL)
table[i].headPtr = newnodePtr;
else {
curPtr = table[i].headPtr;
prePtr = NULL;
//按地址顺序插入内存块
while (curPtr && curPtr->base < inbase) {
prePtr = curPtr;
curPtr = curPtr->nextPtr;
}
if (prePtr == NULL) { //插在最前
newnodePtr->nextPtr = curPtr;
table[i].headPtr = newnodePtr;
}
else if (curPtr == NULL) { //插在最后
prePtr->nextPtr = newnodePtr;
}
else { //插在中间
prePtr->nextPtr = newnodePtr;
newnodePtr->nextPtr = curPtr;
}
}
}
//函数:删除结点
int delete_node (int i, BuddyPtr delPtr)
{
BuddyPtr prePtr = NULL, curPtr = NULL;
int basehold = delPtr->base;
curPtr = table[i].headPtr;
while (curPtr != delPtr) { //寻找要删除的结点的位置
prePtr = curPtr;
curPtr = curPtr->nextPtr;
}
if (prePtr == NULL) //要删除的结点在最前
table[i].headPtr = curPtr->nextPtr;
else //要删除的结点不在链表的最前
prePtr->nextPtr = curPtr->nextPtr;
free (curPtr); //释放结点
return basehold; //返回删除的内存块结点的基地址
}
//函数:伙伴系统的分配算法
void buddy_allocate (int time_slice)
{
int i, j, size, due;
int state = 0; //分配状态:0为未分配,1为已分配
int inbase, basehold;
BuddyPtr curPtr = NULL;
if (ready == time_slice) { //到达分配内存的时刻
printf ("Time %d:", time_slice);
size = 1 + rand () % MAX_REQ_SIZE; //申请使用内存的大小
due = MIN_DUE + rand ()%(MAX_DUE - MIN_DUE); //申请使用内存的时间
if (availSpace > size) {//在可分配空间大于申请空间时分配
//依次寻找可分配的内存块
for (i = 0; (i < INDEX_SIZE) && (state == 0); i ++) {
//找到一个不小于申请大小的块索引
if (table[i].nodesize >= size && table[i].headPtr) {
curPtr = table[i].headPtr;
//遍历相应的循环链表中
while (curPtr && (state == 0)) {
//找到空闲块
if (curPtr->flag == UNUSED) {
//空闲块的大小小于申请大小的2倍,分配
if (table[i].nodesize / size == 1) {
//在分配的内存块上设置信息
curPtr->flag = USED;
curPtr->occupy = size;
curPtr->fragment = table[i].nodesize - size;
curPtr->duetime = due + ready;
//修改可系统分配空间和碎片大小
availSpace -= table[i].nodesize;
totalFragment += curPtr->fragment;
state = 1;//标记已分配
break;
}
//空闲块的大小刚大于申请大小的2倍
else {
basehold = delete_node (i, curPtr);//删除较大的空闲块并保留其基地址
inbase = basehold + table[i].nodesize;
j = i;
//分割空闲块
do {
j --;
inbase -= table[j].nodesize; //设置要添加内存块结点的基地址
insert_node (j, inbase, UNUSED, 0, 0, 0);//添加较小的空闲块
printf ("A block cut takes place\n");
} while (table[j].nodesize / size > 1);
//分配
insert_node (j, basehold, USED, size, table[j].nodesize - size, due + ready);
//修改可系统分配空间和碎片大小
availSpace -= table[j].nodesize;
totalFragment += table[j].nodesize - size;
state = 1;//标记已分配
}
}
//块被占用,查看下一结点
else
curPtr = curPtr->nextPtr;
}
}
}
printf ("Allocated %d,Fragment %d,Due %d\n", size, totalFragment, ready+due);
}
else if ((availSpace < size) && ((availSpace + totalFragment) >= size))
printf ("Allocation failed because of fragment!\n");
else
printf ("Allocation failed because of no enough unused space!\n");
ready += (1 + rand() % OCCUPY_INTERVAL); //下次需要分配内存的时刻
}
}
//函数:伙伴系统的回收算法
void buddy_retrieve (int time_slice)
{
int i, basehold, dif;
int f = 0;
int Modnext=0;
BuddyPtr curPtr = NULL, todelPtr = NULL;
//依次查找,并回收需要回收的块
for (i = 0; i < INDEX_SIZE; i ++) {
if (table[i].headPtr) {
curPtr = table[i].headPtr;
while (curPtr) {
if ((curPtr->flag == USED) && (curPtr->duetime == time_slice)) {//需要回收
//修改可系统分配空间和碎片大小
availSpace += table[i].nodesize;
totalFragment -= curPtr->fragment;
//回收为空闲块
curPtr->flag = UNUSED;
curPtr->occupy = 0;
curPtr->fragment = 0;
curPtr->duetime = 0;
printf ("Time %d:Retrieve %d,Fragment %d\n", time_slice, table[i].nodesize, totalFragment);
}
curPtr = curPtr->nextPtr;
}
}
}
//合并空闲块
for (i = 0; i < INDEX_SIZE; i ++) {
if (table[i].headPtr) {
curPtr = table[i].headPtr;
while (curPtr && curPtr->nextPtr) {
//将地址连续且都为空闲的块合并后加入下一级的链表中
if (curPtr->flag == UNUSED && (curPtr->nextPtr)->flag == UNUSED) {
dif = (curPtr->nextPtr)->base - curPtr->base;
Modnext = ((int)(curPtr->nextPtr->base))%(2*table[i].nodesize);
if ((dif == table[i].nodesize)&&(Modnext==0)) {
//删除两个结点
todelPtr = curPtr;
curPtr = curPtr->nextPtr;
basehold = delete_node (i, todelPtr);
todelPtr = curPtr;
curPtr = curPtr->nextPtr;
delete_node (i, todelPtr);
insert_node (i+1, basehold, UNUSED, 0, 0, 0);//添加合并后的结点
printf ("Two blocks merge\n");
}
else
curPtr = curPtr->nextPtr;
}
else
curPtr = curPtr->nextPtr;
}
}
}
}
//函数:伙伴系统的处理过程
void buddy_system (void)
{
int time_slice = 0;
//在每个时间片内使用分配算法和回收算法
for (; time_slice < WORKTIME; time_slice ++) {
buddy_allocate (time_slice); //分配算法
buddy_retrieve (time_slice); //回收算法
}
}
int main(int argc, char *argv[])
{
int memory_size;
ini_index (); //初始化哈希索引表
srand (time (NULL)); //设置随机数种子
//随机产生需要管理的内存大小:512M ~ 1G
memory_size = MIN_MOMORY_SIZE + rand() % MIN_MOMORY_SIZE;
printf ("The size of memory is:%d\n", memory_size);
int_system (memory_size); //初始化伙伴系统
buddy_system (); //伙伴系统的处理过程
printf ("Time %d:System execution stops and the spaces are all freed.\n", WORKTIME);
free_system (); //释放所有结点
return 0;
}