IB3K80 The Economics of Well-Being 2024SPSS

Java Python IB3K80

The Economics of Well-Being

Individual Assignment, 2024

Assignment Instructions

All assignments must be submitted ONLINE via my.wbs by 12pm (midday) UK time on the date displayed against this assessment.

Please ensure that you have inserted a completedassignment coversheet, which must be included as the first page of your script. This should include your Student ID number, but not your name.

Word Limit

3000 word limit.

Word Count Policy

WBS has a school-wide policy on word counts.  This is strictly enforced to ensure consistency across modules and programme. You can find more information about this policy in your Student Handbook under Academic Practice -7i. Word count policy.

This is a strict limit not a guideline: any piece submitted with more words than the limit will result in the excess not being marked.

Academic Practice

Please ensure you read the full guidelines forAcademic Practicein the Undergraduate Handbook and ensure you understand it. If in doubt, please seek clarification in advance of your submission. This includes important information on:

•    Cheating, plagiarism and collusion

•    Correct referencing

•    Using internet sources in assessments

•    Academic writing

•    English Language support

•    Word count policy

When you submit this assignment online, you will be required to tick a declaration box indicating that the work involved is entirely your own. Each assignment will be put through plagiarism software to identify any collusion or inadequate referencing of materials used from different sources.  Please   do not submit images of your typed work unless you have been specifically requested to do so.

We would consider taking action if your work:

1. is too reliant on the words of particular authors (rather than presenting your ideas in your own   words), if the essay uses the ideas or words of an author without referencing them or putting their words into quotations (plagiarism).

2. suggests that you have worked very closely with another student or students (unless explicitly asked to do so by your Module Leader/Tutor) (collusion).

3. includes unreferenced work that you have previously submitted for any accredited course of study (unless explicitly asked to do so by your Module Leader/Tutor) (self-plagiarism).

The Use of Artificial Intelligence (AI)

The University recognises an increasing number of technologies such as Artificial Intelligence and that they maybe applicable in your completing this assessment. The assessment brief sets out

specific requirements or restrictions, and theUndergraduate Student Handbookhas further guidance and advice.

You are reminded that the inappropriate use of such a technology may constitute a breach of

University policy, such as theProofreading PolicyorRegulation 11 (Academic Integrity). If you

breach these policies, it may have significant consequences for your studies. Please make sure you read and understand the assessment brief and how AI mayor may not be used.

If a generative AI or similar is permitted and has been used you MUST make clear why you used such a tool or service, what you used it for and you will be obliged to confirm that you take

sole intellectual ownership of any submitted work. As appendices, and as part of your submitted

work, you must provide screenshots of the question and the AI-genedai 写IB3K80 The Economics of Well-Being 2024SPSS rated response, alongside an explanation of how the content has been utilised. You should note the relevant reference alongside each screenshot.

When you submit you must complete (physically or electronically) a declaration. This requires you to  explain the use of any AI. Failure to disclose at the point of submission maybe prejudicial in any later investigations should they arise.

For this assessment the use of AI is:

-      Permitted

Where AI is permitted:

If you use a generative Artificial Intelligence (AI) in the process of completing this assessment you MUST set out clearly the following:

•     WHY you used a generative AI

•     WHAT it was used for

•     WHICH AI was used; and

•     If any generated content has been used directly in this submission, if so where.

Note that this declaration does NOT contribute towards the word count for the assessment.

You will also have to confirm in your declaration that the work remains yours and you have

intellectual ownership of it. You may be called for viva or other interview to demonstrate such

intellectual ownership. A failure to disclose the use of AI, or the use of a misleading description of its use may have significant consequences for your studies. As a result, keeping good records of your interactions is strongly advised.

Extensions and Self-certification

Late submissions will incura penalty of 5% for every 24 hour period after the due date and time,i.e. this begins one minute after the submission deadline (beginning at 12.01pm).

Requests for specific extensions (of up to 15 days) which are typically for longer and more serious   concerns must be submitted via my.wbs ideally 72 hours BEFORE the deadline. Extensions can only be approved if you clearly detail your circumstances and provide supporting documentation (or a    reason as to why you cannot provide the supporting documentation at the time) asset out in the    Mitigating Circumstances Policy.

Self-certification is a university-wide policy whereby you are permitted an automatic extension of 5 working days on eligible written assessed work without the need for evidence. WBS permits self-certification for all types of written, assessed works such as essays and dissertations. It is not permitted for exams, course tests, or presentations.

You can self-certify twice within each year of study, starting from the anniversary of your course

start date. This will coverall eligible written assessments that fall within the self-certification period, as long as they have not previously had an extension applied. To find out further details about the

self-certification policy please see:https://my.wbs.ac.uk/-/academic/20778/item/id/1244460/ .  If you wish to self-certify for an extension of 5 working days, please select 'Self-certification' in the    Extension Type field. If you wish to request a longer extension than 5 working days, please leave the Extension Type as 'Standard'.

Your assignment instructions begin below.

Assignment

You may select your one topic from the following list of research questions or produce your own research question for the assignment. This is completely your choice.

Here are the pre-assigned topics from which you could choose:

•    Critically examine the methods used for well-being valuation. How effective are these

methods in capturing the multifaceted nature of well-being, and what improvements could be made?

•    Discuss the impact of workplace well-being on productivity and economic growth. Can a focus on well-being be justified from a macroeconomic standpoint?

•    Investigate the concept of hedonic adaptation in the context of income and social status         

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
### t-SNE在SPSS中的应用 尽管t-SNE是一种强大的降维技术,但在SPSS中并没有内置支持该方法的功能。然而,可以通过外部工具(如Python或R)来计算t-SNE的结果,并将其导入SPSS进行进一步分析和可视化[^1]。 #### 方法一:通过Python插件扩展SPSS功能 SPSS允许用户通过其集成的Python环境执行脚本操作。可以利用`sklearn.manifold.TSNE`库完成t-SNE降维处理,并将结果导回SPSS用于后续分析。 以下是具体实现方式: ```python from sklearn.manifold import TSNE import pandas as pd # 假设data是一个DataFrame对象,其中包含了需要降维的数据 tsne_model = TSNE(n_components=2, random_state=42) result_tsne = tsne_model.fit_transform(data) # 将t-SNE结果转换为Pandas DataFrame以便于保存至SPSS df_result = pd.DataFrame(result_tsne, columns=[&#39;TSNE_Dim1&#39;, &#39;TSNE_Dim2&#39;]) ``` 运行上述代码后,可将`t-SNE`维度数据存储到新的变量列中,并重新加载到SPSS环境中继续绘图或其他统计检验过程[^2]。 #### 方法二:借助R语言作为中介桥梁 如果更熟悉R编程,则可以选择另一种途径——即先采用R包`Rtsne`完成实际运算工作后再转移给SPSS平台展示图形效果。 下面给出一段简单的示范程序片段供参考: ```r library(Rtsne) set.seed(123) tsne_out <- Rtsne(as.matrix(your_data), perplexity=30, theta=0.5, check_duplicates = FALSE)$Y dimnames(tsne_out)[[2]] <- c(&#39;Dim1&#39;,&#39;Dim2&#39;) write.csv(tsne_out,"output_for_spss.csv",row.names=F) ``` 之后只需把生成好的CSV文件读入SPSS即可轻松制作散点分布图表等形式的表现形式[^3]。 ### 注意事项 无论采取哪种方案,在正式实施前都应仔细校验输入矩阵的质量以及参数设置合理性;另外考虑到高维空间投影可能引发的信息损失现象,务必结合领域背景知识审慎解读最终成果含义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值