Caffe 中makefile.config 的参数说明

本文详细介绍了Caffe深度学习框架的搭建配置过程,包括如何选择和设置GPU、CPU及各种依赖库如cuDNN、OpenCV等。同时,还提供了关于BLAS库的选择建议以及Python和Matlab接口的配置说明。
摘要由CSDN通过智能技术生成
    <span style="color:rgb(102,102,102);font-family:Arial, Console, Verdana, 'Courier New';font-size:14px;">转载出处http://blog.csdn.net/jiajunlee</span>  


    ## Refer to http://caffe.berkeleyvision.org/installation.html  
    # Contributions simplifying and improving our build system are welcome!  


    # cuDNN acceleration switch (uncomment to build with cuDNN).  
    # USE_CUDNN := 1  
    "CuDNN是NVIDIA专门针对Deep Learning框架设计的一套GPU计算加速库,用于实现高性能的并行计算,在有GPU并且安装CuDNN的情况下可以打开即将注释去掉。"  


    # CPU-only switch (uncomment to build without GPU support).  
    #CPU_ONLY := 1  
    "表示是否用GPU,如果只有CPU这里要打开"  


    # uncomment to disable IO dependencies and corresponding data layers  
    USE_OPENCV := 1  
    "因为要用到OpenCV库所以要打开,下面这两个选项表示是选择Caffe的数据管理第三方库,两者都不打开 Caffe默认用的是LMDB,这两者均是嵌入式数据库管理系统编程库。"  
    # USE_LEVELDB := 0  
    # USE_LMDB := 0  


    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)  
    #   You should not set this flag if you will be reading LMDBs with any  
    #   possibility of simultaneous read and write  
    # ALLOW_LMDB_NOLOCK := 1  
    "当需要读取LMDB文件时可以取消注释,默认不打开。"  


    # Uncomment if you're using OpenCV 3  
    OPENCV_VERSION := 2.4.10  
    "用pkg-config --modversion opencv命令查看opencv版本"  


    # To customize your choice of compiler, uncomment and set the following.  
    # N.B. the default for Linux is g++ and the default for OSX is clang++  
    # CUSTOM_CXX := g++  
    "linux系统默认使用g++编译器,OSX则是clang++。"  


    # CUDA directory contains bin/ and lib/ directories that we need.  
    CUDA_DIR := /usr/local/cuda  
    "CUDA的安装目录"  
    # On Ubuntu 14.04, if cuda tools are installed via  
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:  
    # CUDA_DIR := /usr  


    # CUDA architecture setting: going with all of them.  
    # For CUDA < 6.0, comment the *_50 lines for compatibility.  
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \  
            -gencode arch=compute_20,code=sm_21 \  
            -gencode arch=compute_30,code=sm_30 \  
            -gencode arch=compute_35,code=sm_35 \  
            -gencode arch=compute_50,code=sm_50 \  
            -gencode arch=compute_50,code=compute_50  
    "这些参数需要根据GPU的计算能力  
    (http://blog.csdn.net/jiajunlee/article/details/52067962)来进行设置,6.0以下的版本不支持×_50的计算能力。"  


    # BLAS choice:  
    # atlas for ATLAS (default)  
    # mkl for MKL  
    # open for OpenBlas  
    BLAS := open  
    "如果用的是ATLAS计算库则赋值atlas,MKL计算库则用mkl赋值,OpenBlas则赋值open。"  


    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.  
    # Leave commented to accept the defaults for your choice of BLAS  
    # (which should work)!  
    BLAS_INCLUDE := /usr/local/OpenBlas/include  
    BLAS_LIB := /usr/local/OpenBlas/lib  
    "blas库安装目录"  


    # Homebrew puts openblas in a directory that is not on the standard search path  
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include  
    # BLAS_LIB := $(shell brew --prefix openblas)/lib  
    "如果不是安装在标准路径则要指明"  


    # This is required only if you will compile the matlab interface.  
    # MATLAB directory should contain the mex binary in /bin.  
    # MATLAB_DIR := /usr/local  
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app  
    "matlab安装库的目录"  


    # NOTE: this is required only if you will compile the python interface.  
    # We need to be able to find Python.h and numpy/arrayobject.h.  
    PYTHON_INCLUDE := /usr/include/python2.7 \  
            /usr/lib/python2.7/dist-packages/numpy/core/include  
    "python安装目录"  
    # Anaconda Python distribution is quite popular. Include path:  
    # Verify anaconda location, sometimes it's in root.  
    # ANACONDA_HOME := $(HOME)/anaconda  
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \  
            # $(ANACONDA_HOME)/include/python2.7 \  
            # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \  


    # Uncomment to use Python 3 (default is Python 2)  
    # PYTHON_LIBRARIES := boost_python3 python3.5m  
    # PYTHON_INCLUDE := /usr/include/python3.5m \  
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include  


    # We need to be able to find libpythonX.X.so or .dylib.  
    PYTHON_LIB := /usr/lib  
    <font color="green">python库位置</font>  
    # PYTHON_LIB := $(ANACONDA_HOME)/lib  


    # Homebrew installs numpy in a non standard path (keg only)  
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include  
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib  


    # Uncomment to support layers written in Python (will link against Python libs)  
    WITH_PYTHON_LAYER := 1  


    # Whatever else you find you need goes here.  
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include  
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib  


    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies  
    # INCLUDE_DIRS += $(shell brew --prefix)/include  
    # LIBRARY_DIRS += $(shell brew --prefix)/lib  


    # Uncomment to use `pkg-config` to specify OpenCV library paths.  
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)  
    # USE_PKG_CONFIG := 1  


    # N.B. both build and distribute dirs are cleared on `make clean`  
    BUILD_DIR := build  
    DISTRIBUTE_DIR := distribute  


    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171  
    # DEBUG := 1  


    # The ID of the GPU that 'make runtest' will use to run unit tests.  
    TEST_GPUID := 0  
    "所用的GPU的ID编号"  


    # enable pretty build (comment to see full commands)  
    Q ?= @  

本文转载自:http://blog.csdn.net/jiajunlee/article/details/52068230

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值