在一个星光摧残的夜晚,蒜头君一颗一颗的数这天上的星星。
蒜头君给在天上巧妙的画了一个直角坐标系,让所有的星星都分布在第一象。天上有 nn 颗星星,他能知道每一颗星星的坐标和亮度。
现在,蒜头君问自己 qq 次,每次他问自己每个矩形区域的星星的亮度和是多少(包含边界上的星星)。
输入格式
第一行输入一个整数 n(1 \le n \le 50000)n(1≤n≤50000) 表示星星的数量。
接下里 nn 行,每行输入三个整数 x,y,w(0 \le x, y, w\le 2000)x,y,w(0≤x,y,w≤2000),表示在坐标 (x,y)(x,y) 有一颗亮度为 ww 的星星。注意一个点可能有多个星星。
接下来一行输入一个整数 q(1 \le q \le 50000)q(1≤q≤50000),表示查询的次数。
接下来 qq 行,每行输入四个整数 x_1, y_1, x_2, y_2x1,y1,x2,y2,其中 (x_1, y_1)(x1,y1) 表示查询的矩形的左下角的坐标,(x_2, y_2)(x2,y2) 表示查询的矩形的右上角的坐标,0 \le x_1 \le x_2 \le 20000≤x1≤x2≤2000,0 \le y_1 \le y_2 \le 20000≤y1≤y2≤2000。
输出格式
对于每一次查询,输出一行一个整数,表示查询的矩形区域内的星星的亮度总和。
样例输入
5 5 0 6 7 9 7 8 6 13 9 7 1 3 0 19 4 0 8 7 9 0 0 7 10 2 7 10 9 5 4 7 5
样例输出
7 32 8 0
因为数据范围很小,利用前缀和可推理到空间和,令dp[i][j]表示(1,1),(1,j),(i,1),(i,j)四个点之间星星亮度的总和,那么(x1,y1)和(x2,y2)之间星星亮度的总和就是dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1],(因为坐标线上也可能存在星星,所以需要考虑一下边界),具体请看代码。
#include <stdio.h>
#include <string.h>
int dp[2005][2005];
int main() {
int n;
int x, y, w;
int q;
int x1, y1, x2, y2;
int mx = 2005;
memset(dp, 0, sizeof(dp));
scanf("%d", &n);
while(n--) {
scanf("%d %d %d", &x, &y, &w);
dp[x+1][y+1] += w; //因为星星可以重复,即亮度可以叠加
}
for(int i = 1; i < mx; i++) {
for(int j = 1; j < mx; j++) {
dp[i][j] += dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1];//注意边界
}
}
scanf("%d", &q);
while(q--) {
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
int ans = dp[x2+1][y2+1] - dp[x2+1][y1] - dp[x1][y2+1] + dp[x1][y1];//注意边界
printf("%d\n", ans);
}
return 0;
}