KMeans聚类算法分析以及实现

本文详细介绍了KMeans聚类算法的工作原理,包括其无监督学习特性,以及如何通过计算数据与质心的距离进行分组。同时,文章讨论了KMeans存在的问题,如对初始值敏感、可能陷入局部最优解,以及对非凸形状簇和异常值的处理。针对这些问题,提出了采用"剪枝"和"增枝"策略以及二分KMeans优化方法。最后,提供了代码实现的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KMeans

KMeans是一种无监督学习聚类方法, 目的是发现数据中数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

无监督学习,也就是没有对应的标签,只有数据记录.通过KMeans聚类,可以将数据划分成一个簇,进而发现数据之间的关系.

聚类过程

原理

KMeans算法是将数据 x 1 , x 2 , . . . , x n {x^1, x^2 ,..., x^n} x1,x2,...,xn聚类成k个簇,其中每个 x i ∈ R n x^i \in R^n xiR

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值