目录
摘要
在人工智能快速发展的当下,增量学习正面临灾难性遗忘这一严峻挑战。当模型学习新任务时,极易遗忘旧任务知识,严重影响其性能与稳定性。知识蒸馏技术凭借独特优势,为解决此问题提供了有效途径。本文将深入探讨知识蒸馏技术在增量学习中的应用,揭示其原理、方法和价值。
一、引言
随着大数据时代的到来,数据量呈爆发式增长,增量学习作为机器学习领域的重要分支,能够使模型在不断学习新数据的过程中动态更新,而无需重新训练整个模型。然而,灾难性遗忘问题却成为制约其发展的关键瓶颈。
目录
在人工智能快速发展的当下,增量学习正面临灾难性遗忘这一严峻挑战。当模型学习新任务时,极易遗忘旧任务知识,严重影响其性能与稳定性。知识蒸馏技术凭借独特优势,为解决此问题提供了有效途径。本文将深入探讨知识蒸馏技术在增量学习中的应用,揭示其原理、方法和价值。
随着大数据时代的到来,数据量呈爆发式增长,增量学习作为机器学习领域的重要分支,能够使模型在不断学习新数据的过程中动态更新,而无需重新训练整个模型。然而,灾难性遗忘问题却成为制约其发展的关键瓶颈。