结合知识蒸馏的增量学习方法总结
知识蒸馏(Knowledge Distillation)最早是在Hinton的《Distilling the Knowledge in a Neural Network》一文中提出,运用在图像分类任务上,并迅速在其他领域广泛应用开来。
知识蒸馏通过引入教师网络(Teacher network:复杂度高、但推理性能优越)以指导学生网络(Student network:复杂度低、简单)的训练,实现知识迁移(Knowledge transfer)。知识蒸馏具体的介绍及发展不在这赘述。
增量学习的概念,是指一个学习系统能不断地从新样本中学习新的知识,并能保存大部分以前已经学习到的知识。就像我们从小开始学习新东西,但是也能记住之前学习到的知识。
期望的增量学习系统应该有这样四个特点:
- 可以学习到新信息中的有用信息;
- 不需要访问已经用于训练分类器的原始数据;
- 对已经学习到的知识具有记忆功能;
- 在面对新数据中包含的新类别时,可以有效地进行处理。
但是机器学习、深度学习这些神经网络有个很严重的问题是,只会去拟合当前数据集的分布,如果在新的数据集上再训练,就会产生灾难性遗忘,学了新的忘了旧的。
本文总结了4篇用到知识蒸馏思想来做增量学习的代表性论文,也是增量学习领域内的重要论文