结合知识蒸馏的增量学习方法总结

本文总结了4篇使用知识蒸馏进行增量学习的论文,包括《Learning without Forgetting》、《iCaRL: Incremental Classifier and Representation Learning》、《End-to-End Incremental Learning》和《Large Scale Incremental Learning》,探讨了如何在不遗忘旧知识的情况下,通过知识蒸馏有效学习新任务,重点关注模型如何处理新旧数据,避免灾难性遗忘问题。
摘要由CSDN通过智能技术生成

结合知识蒸馏的增量学习方法总结

知识蒸馏(Knowledge Distillation)最早是在Hinton的《Distilling the Knowledge in a Neural Network》一文中提出,运用在图像分类任务上,并迅速在其他领域广泛应用开来。

知识蒸馏通过引入教师网络(Teacher network:复杂度高、但推理性能优越)以指导学生网络(Student network:复杂度低、简单)的训练,实现知识迁移(Knowledge transfer)。知识蒸馏具体的介绍及发展不在这赘述。

增量学习的概念,是指一个学习系统能不断地从新样本中学习新的知识,并能保存大部分以前已经学习到的知识。就像我们从小开始学习新东西,但是也能记住之前学习到的知识。

期望的增量学习系统应该有这样四个特点:

  1. 可以学习到新信息中的有用信息;
  2. 不需要访问已经用于训练分类器的原始数据;
  3. 对已经学习到的知识具有记忆功能;
  4. 在面对新数据中包含的新类别时,可以有效地进行处理。

但是机器学习、深度学习这些神经网络有个很严重的问题是,只会去拟合当前数据集的分布,如果在新的数据集上再训练,就会产生灾难性遗忘,学了新的忘了旧的。

本文总结了4篇用到知识蒸馏思想来做增量学习的代表性论文,也是增量学习领域内的重要论文

1.《Learning without Forgetting》(ECCV 2016)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值