OpenPose:快速入门

本文介绍了OpenPose的入门使用,包括BODY_25、COCO和MPI模型的区别,如何输入视频、网络摄像头和图像,以及最高精度配置的设定。OpenPose推荐使用BODY_25模型,因为它具有更高的精度且包含脚部关键点。文章还提到了不同配置对性能和精度的影响,以及3D重建和跟踪的应用。
摘要由CSDN通过智能技术生成

在任何命令行接口程序上运行以下命令,检查代码库是否正常工作。在Ubuntu、Mac和其他Unix系统中,可以使用任何命令行界面,比如TerminalTerminator。在Windows中,打开PowerShell(推荐)或Windows命令提示符(CMD)。它们可以通过Windows+ X组合键,然后载按A来打开。如果您不熟悉这些非GUI工具,请观看Youtube视频教程。请确保您位于项目的根目录中(即,在OpenPose文件夹下,而不是在build/windows/bin/文件夹下)。另外,examples/media/video.aviexamples/media确实存在,不需要改变路径。

BODY_25 vs. COCO vs. MPI Models

BODY_25模型(--model_pose BODY_25)包括躯干和脚部的关键点,它是基于论文OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields开发的。COCO和MPI模型速度较慢,精度较低,而且不包含脚部关键点。它是基于论文Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields开发的。我们强烈建议只使用BODY_25模型。
有一个例外,对于CPU版本,COCO和MPI模型似乎更快,但精度仍然是BODY_25模型更好。

输入视频

# Ubuntu and Mac
./build/examples/openpose/openpose.bin --video examples/media/video.avi
# With face and hands
./build/examples/openpose/openpose.bin --video examples/media/video.avi --face --hand
:: Windows - Portable Demo
bin\OpenPoseDemo.exe --video examples\media\video.avi
:: With face and hands
bin\OpenPoseDemo.exe --video examples\media\video.avi --face --hand
:: Windows - Library - Assuming you copied the DLLs following doc/installation.md#windows
build\x64\Release\OpenPoseDemo.exe --video examples\media\video.avi
:: With face and hands
build\x64\Release\OpenPoseDemo.exe --video examples\media\video.avi --face --hand

输入网络摄像

# Ubuntu and Mac
./build/examples/openpose/openpose.bin
# With face and hands
./build/examples/openpose/openpose.bin --face --hand
:: Windows - Portable Demo
bin\OpenPoseDemo.exe
:: With face and hands
bin\OpenP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值