-
题目描述:
-
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
-
输入:
-
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
-
输出:
-
对每个测试用例,在1行里输出最小的公路总长度。
-
样例输入:
-
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
-
样例输出:
-
3
5
-
考察最小生成树(Kruskal算法):
-
解题思路:
-
这是一个图的问题,为求联通所有点的最小路径,将图转化为树(树是没有环形的)。具体做法如下:
-
建立一个Tree[101]数组,存放每个结点的根节点,采用递归的方法求每个结点的根节点,刚开始所有点 i 的Tree[i] = -1,代码如下:
-
int findRoot(int x) { if(Tree[x] == -1) return x; else { int temp = findRoot(Tree[x]); Tree[x] = temp; return temp; } }
根据输入的点v1与v2及两点的距离d将结点一个个的加入到树的结构中去,并在递归中使用了根节点的路径压缩,让Tree[i]直接指向结点i的最终父结点,当两点的父结点一样时,其实就是在图中会形成环形时,舍弃掉这个路径。在计算最短路径之前要先对路径按照权值从小到大排序,根节点不同的点加入树结构中,直到所有边都计算完。
-
代码实现(C/C++):
-
#include<stdio.h> #include<algorithm> using namespace std; // 记录任意两点及两点间的距离 struct way { int v1; int v2; int d; }way[5000]; // 记录点的根节点 int Tree[101]; // 对路径数组按照距离从小到大排序 bool cmp(struct way a,struct way b) { return a.d < b.d; } // 采用缩短路径的方式寻找根节点 int findRoot(int x) { if(Tree[x] == -1) return x; else { int temp = findRoot(Tree[x]); Tree[x] = temp; return temp; } } int main() { int i,n,sum; while(scanf("%d",&n)!=EOF && n) { for(i = 1;i <= 100; i++) Tree[i] = -1; sum = 0; for(i = 1; i <= n*(n-1)/2; i++) { scanf("%d%d%d",&way[i].v1,&way[i].v2,&way[i].d); } // 将路径按权值从小到大排好序,Kruskal算法 sort(way+1,way+n*(n-1)/2,cmp); for(i = 1; i <= n*(n-1)/2; i++) { int x = findRoot(way[i].v1); int y = findRoot(way[i].v2); if(x != y) // 根节点不同,避免环产生 { Tree[x] = y; sum += way[i].d; // 将该路径加入 } } printf("%d\n",sum); } return 0; }
笔记:在OJ做题时记得在每次大循环开始后初始化数据,避免上一次的输入数据产生的结果对下一次的输入产生影响,如上面的代码片段: -
while(scanf("%d",&n)!=EOF && n) { for(i = 1;i <= 100; i++) // 数组Tree[]和sum要重新初始化 Tree[i] = -1; sum = 0; }
-
-