WGAN的训练技巧总结(持续更新)

本文总结了Wasserstein GAN(WGAN)训练的关键技巧,包括调节Generator和Discriminator的权重、训练次数比例、学习率、优化器选择、Discriminator结构调整以及Generator和Discriminator的loss曲线分析。通过这些方法,可以有效改善GAN的性能和稳定性。
摘要由CSDN通过智能技术生成

1.生成对抗网络训练心得
作者:阿阿阿阿毛
https://www.jianshu.com/p/aab68eb0f7ed

2.GAN — Ways to improve GAN performance
作者:Jonathan Hui
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

一、权重

a. 调节Generator loss中GAN loss的权重
G loss和Gan loss在一个尺度上或者G loss比Gan loss大一个尺度。但是千万不能让Gan loss占主导地位, 这样整个网络权重会被带偏。

二、训练次数

b. 调节Generator和Discrimnator的训练次数比
一般来说,Discrimnator要训练的比Genenrator多。比如训练五次Discrimnator,再训练一次Genenrator(WGAN论文 是这么干的)。

三、学习率

c. 调节learning rate
这个学习速率不能过大。一般要比Genenrator的速率小一点。

四、优化器

d. Optimizer的选择

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值