力扣 516. 最长回文子序列

本文解析了如何使用Python实现LeetCode上的最长回文子序列问题,通过动态规划的方法解决字符串序列的对称子序列长度计算。详细介绍了状态转移方程和代码实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目来源:https://leetcode-cn.com/problems/longest-palindromic-subsequence/

大致题意:
给一个序列,求出其最长回文(形如 aabb aabaa 的对称序列)子序列(原序列不改变顺序,可能删除一些字符形成的序列)。

思路

动态规划

使用二维数组dp[j][i]表示,索引 j 至 i 的子序列中最长的回文子序列。

  • 初始化时,所有的dp[i][i]都为1
  • 然后在保证 0 <= j <= i < n 的情况下,有
  • 若此时 s[j] = s[i],dp[j][i] = dp[j+1][i-1] + 2
  • 反之,即 s[j] != s[i],dp[j][i] = max(dp[j+1][i], dp[j][i-1])

代码:

public int longestPalindromeSubseq(String s) {
        int n = s.length();
        int[][] dp = new int[n][n];
        for (int i = 0; i < n; i++) {
        	// 初始化
            dp[i][i] = 1;
            // 在i-1至0中逐步更新j
            for (int j = i-1; j >= 0; j--) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[j][i] = dp[j+1][i-1] + 2;
                }
                else {
                    dp[j][i] = Math.max(dp[j+1][i], dp[j][i-1]);
                }
            }
        }
        return dp[0][n-1];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三更鬼

谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值