力扣516.最长回文子序列

文章介绍了使用动态规划方法解决找到字符串中最长回文子序列的问题。通过构建二维数组dp,按照从下往上、从左往右的顺序遍历,根据字符关系更新dp[i][j]的值。核心逻辑包括三种情况:单个字符、相邻字符和其它情况,最后返回dp[0][n-1]作为最长回文子序列的长度。
摘要由CSDN通过智能技术生成

动态规划写法

和最长回文串十分相似,仍然是先构建二维数组dp

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

考虑以下几种情况

1. i == j 即 i 和 j 指向同一个字符。

这种情况下dp[i][j] = 1;

2. i == j+1, 即i 和 j 指向相邻的字符。

        ①如果 s[i] == s[j] 则 dp[i][j] = 2;

        ②如果 s[i] != s[j]  则 dp[i][j] = 1;

3. 剩下的情况,字符数大于三时。

        ①如果 s[i] == s[j] 则 dp[i][j] = dp[i+1][j-1] + 2;

        ②如果 s[i]  != s[j] 则 dp[i][j] = max(dp[i+1][j], dp[i][j-1]);

[i+1][j-1],[i+1][j],[i][j-1]分别位于[i][j]的左下方,下方,和左方,所以应该从下往上,从左往右遍历,又因为i <= j(从i~j的字符串)所以边界情况就是二维数组的对角线,它们会在情况1中被赋值为1。剩下的位置会被依次赋值。

代码如下

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>>dp(n, vector<int>(n, 0));
        for(int i = n-1; i >= 0; --i){
            for(int j = i; j < n; ++j){
                if(i == j)
                    dp[i][j] = 1;
                else if(j == i + 1)
                    if(s[j] == s[i])
                        dp[i][j] = 2;
                    else 
                        dp[i][j] = 1;
                else
                    if(s[i] == s[j])
                        dp[i][j] = dp[i+1][j-1] + 2;
                    else
                        dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
            }
        }
        return dp[0][n-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值