动态规划写法
和最长回文串十分相似,仍然是先构建二维数组dp
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
考虑以下几种情况
1. i == j 即 i 和 j 指向同一个字符。
这种情况下dp[i][j] = 1;
2. i == j+1, 即i 和 j 指向相邻的字符。
①如果 s[i] == s[j] 则 dp[i][j] = 2;
②如果 s[i] != s[j] 则 dp[i][j] = 1;
3. 剩下的情况,字符数大于三时。
①如果 s[i] == s[j] 则 dp[i][j] = dp[i+1][j-1] + 2;
②如果 s[i] != s[j] 则 dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
[i+1][j-1],[i+1][j],[i][j-1]分别位于[i][j]的左下方,下方,和左方,所以应该从下往上,从左往右遍历,又因为i <= j(从i~j的字符串)所以边界情况就是二维数组的对角线,它们会在情况1中被赋值为1。剩下的位置会被依次赋值。
代码如下
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>>dp(n, vector<int>(n, 0));
for(int i = n-1; i >= 0; --i){
for(int j = i; j < n; ++j){
if(i == j)
dp[i][j] = 1;
else if(j == i + 1)
if(s[j] == s[i])
dp[i][j] = 2;
else
dp[i][j] = 1;
else
if(s[i] == s[j])
dp[i][j] = dp[i+1][j-1] + 2;
else
dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
}
}
return dp[0][n-1];
}
};