力扣 36. 有效的数独

题目来源:https://leetcode-cn.com/problems/valid-sudoku/

大致题意:
给定一个 9 * 9 的数独方格图,其由 9 个 3 * 3 的九宫格构成。若该数独有效,则返回 true,否则返回 false。
有效的前提:

  • 数字 1-9 在同一行只会出现一次
  • 数字 1-9 在同一列只会出现一次
  • 数字 1-9 在一个 3*3 的九宫格中只出现一次

思路

九九八十一,暴力就完事了

九宫格遍历

为了节省内存,我选择依次遍历九个九宫格。这样只用一个数组来判断九宫格数字是否重复就可以了。

  1. 创建两个第一维和第二维都为 9 的布尔数组,来判断某一行(列)的数字是否有重复
  2. 依次遍历九个九宫格,每次都初始化一个大小为 9 的布尔数组判断九宫格数字是否有重复

代码:

public boolean isValidSudoku(char[][] board) {
        int[][] row = new int[9][9];    // 记录某一行出现的数
        int[][] col = new int[9][9];    // 记录某一列出现的数
        // 遍历 9 个 3*3 的九宫格
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                // 初始化九宫格数组,记录和判断当前九宫格是否有重复数字
                int[] cells = new int[9];
                // 遍历当前九宫格
                // 行
                for (int r = 0 + i * 3; r < 3 + i * 3; r++) {
                    // 列
                    for (int c = 0 + j * 3; c < 3 + j * 3; c++) {
                        if (board[r][c] == '.') {
                            continue;
                        }
                        // 获取数字,减去 1 是因为数组索引从 0 开始
                        int num = board[r][c] - '1';
                        // 若行、列、九宫格中出现过该数字,直接返回 false
                        if (row[r][num] == 1 || col[c][num] == 1 || cells[num] == 1) {
                            return false;
                        }
                        // 标记
                        row[r][num] = 1;
                        col[c][num] = 1;
                        cells[num] = 1;
                    }
                }
            }
        }
        return true;
    }
### LeetCode 146 LRU Cache 的 C++ 实现 LRU(Least Recently Used)是一种常见的缓存淘汰策略,用于管理固定大小的内存空间。当缓存满时,会移除最近最少使用的数据项以腾出空间。 以下是基于双向链表和哈希表实现的 C++ 解决方案: #### 双向链表节点定义 为了高效地维护访问顺序并快速更新节点位置,可以使用自定义的 `ListNode` 类来表示双向链表中的节点。 ```cpp struct ListNode { int key; int value; ListNode* prev; ListNode* next; ListNode(int k, int v) : key(k), value(v), prev(nullptr), next(nullptr) {} }; ``` #### 缓存类设计 通过组合哈希表和双向链表,可以在 O(1) 时间复杂度下完成插入、删除以及查找操作。 ```cpp class LRUCache { private: unordered_map<int, ListNode*> map; // 哈希表存储键到节点指针的映射关系 ListNode* head; // 虚拟头结点 ListNode* tail; // 虚拟尾结点 int capacity; // 容量上限 public: LRUCache(int cap) : capacity(cap) { head = new ListNode(-1, -1); // 初始化虚拟头部 tail = new ListNode(-1, -1); // 初始化虚拟尾部 head->next = tail; // 连接首尾 tail->prev = head; } ~LRUCache() { ListNode* cur = head; while (cur != nullptr) { ListNode* temp = cur; cur = cur->next; delete temp; } } void removeNode(ListNode* node) { node->prev->next = node->next; node->next->prev = node->prev; } void addToHead(ListNode* node) { node->next = head->next; node->prev = head; head->next->prev = node; head->next = node; } int get(int key) { if (!map.count(key)) return -1; // 如果不存在该key,则返回-1 ListNode* node = map[key]; removeNode(node); addToHead(node); return node->value; } void put(int key, int value) { if (map.count(key)) { // 若已存在则更新其值并将它移到最前面 ListNode* node = map[key]; node->value = value; removeNode(node); addToHead(node); return; } if (map.size() >= capacity) { // 当容量达到上限时,移除最后未被使用的节点 ListNode* lastUsed = tail->prev; removeNode(lastUsed); map.erase(lastUsed->key); delete lastUsed; } ListNode* newNode = new ListNode(key, value); // 创建新节点并加入hashMap与链表前端 map[key] = newNode; addToHead(newNode); } }; ``` 上述代码实现了基本功能[^3],其中包含了以下几个核心部分: - **removeNode**: 将指定节点从当前列表中移除。 - **addToHead**: 把某个节点移动至链表开头的位置。 - **get 方法**: 获取对应 key 的值,并将其标记为最新访问过的项目。 - **put 方法**: 插入新的键值对或者覆盖已有条目;如果超出设定的最大数量限制,则清除掉最早之前加载的数据记录。 此版本的时间效率较高,在每次调用 `get()` 或者 `set()` 函数时都能保持常数级时间性能表现[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三更鬼

谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值