A Simple Problem with Integers||POJ3468

link:http://poj.org/problem?id=3468
Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

树状数组天生用来动态维护数组前缀和,其特点是每次更新一个元素的值,查询只能查数组的前缀和,但这个题目求的是某一区间的数组和,而且要支持批量更新某一区间内元素的值,怎么办呢?实际上,还是可以把问题转化为求数组的前缀和。

首先,看更新操作update(s, t, d)把区间A[s]…A[t]都增加d,我们引入一个数组delta[i],表示A[i]…A[n]的共同增量,n是数组的大小。那么update操作可以转化为:
令delta[s] = delta[s] + d,表示将A[s]…A[n]同时增加d,但这样A[t+1]…A[n]就多加了d,所以再令delta[t+1] = delta[t+1] - d,表示将A[t+1]…A[n]同时减d然后来看查询操作query(s, t),求A[s]…A[t]的区间和,转化为求前缀和,设sum[i] = A[1]+…+A[i],则A[s]+…+A[t] = sum[t] - sum[s-1],那么前缀和sum[x]又如何求呢?它由两部分组成,一是数组的原始和,二是该区间内的累计增量和, 把数组A的原始值保存在数组org中,并且delta[i]对sum[x]的贡献值为delta[i]*(x+1-i),那么
sum[x] = org[1]+…+org[x] + delta[1]x + delta[2](x-1) + delta[3](x-2)+…+delta[x]*1= org[1]+…+org[x] + segma(delta[i](x+1-i))= segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i),1 <= i <= x
这其实就是三个数组org[i], delta[i]和delta[i]*i的前缀和,org[i]的前缀和保持不变,事先就可以求出来,delta[i]和delta[i]*i的前缀和是不断变化的,可以用两个树状数组来维护。

这是区间和的模板题
AC代码:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
long long a1[100010],a2[100010],a3[100010];
int n;
void update(long long *a,int x,int y)
{
    while(x<=n)
    {
        a[x]+=y;
        x+=(x&-x);
    }
}
long long query(long long *a,int x)
{
    long long sum=0;
    while(x>0)
    {
        sum+=a[x];
        x-=(x&-x);
    }
    return sum;
}
int main()
{
    int i,m,a,b,c,x;
    char s;
    long long ans; 
    memset(a3,0,sizeof(a3));
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++)
    {
        scanf("%d",&x);
        a3[i]=a3[i-1]+x;
    }
    while(m--)
    {
        scanf("%s",&s);
        if(s=='Q')
        {
            scanf("%d%d",&a,&b);
            ans=a3[b]-a3[a-1];
            ans+=(b+1)*query(a1,b)-query(a2,b);
            ans-=a*query(a1,a-1)-query(a2,a-1);
            printf("%lld\n",ans);
        }
        else
        {
            scanf("%d%d%d",&a,&b,&c);
            update(a1,a,c);
            update(a1,b+1,-c);
            update(a2,a,a*c);
            update(a2,b+1,-c*(b+1));
        }
    }
return 0;
}
### POJ2891 Strange Way to Express Integers 的算法解析 此问题的核心在于通过扩展中国剩余定理来解决一组模线性同余方程组。当模数不一定两两互质时,可以通过逐步合并的方式解决问题。 #### 扩展中国剩余定理的应用 对于两个同余方程 \( N \equiv r_1 \ (\text{mod} \ m_1) \) 和 \( N \equiv r_2 \ (\text{mod} \ m_2) \),我们需要找到满足这两个条件的最小非负整数解。设 \( d = \gcd(m_1, m_2) \),则存在整数解的前提是 \( (r_2 - r_1) \% d == 0 \)[^4]。如果该条件成立,则可通过扩展欧几里得算法求出特解并进一步计算通解。 具体步骤如下: 1. **初始化参数** 设初始状态为 \( M = m_1 \) 和 \( R = r_1 \)。 2. **逐对处理每一对模数和余数** 对于当前的状态 \( M \) 和 \( R \),以及新的模数 \( m_i \) 和余数 \( r_i \),我们尝试将其合并成一个新的同余关系: \[ xM + ym_i = r_i - R \] 如果 \( (r_i - R) \% gcd(M, m_i) != 0 \),说明无解;否则继续下一步。 3. **利用扩展欧几里得算法求解系数** 使用扩展欧几里得算法求解上述不定方程的一组特解 \( x_0 \) 和 \( y_0 \)。然后调整这些系数使得最终的结果落在有效范围内。 4. **更新全局变量** 更新后的模数为 \( lcm(M, m_i) \),而对应的余数则是新算出来的值加上原来的偏移量。 5. **重复直到完成所有输入数据** 最后得到的 \( R \) 即为目标答案。 以下是基于 Python 实现的一个版本: ```python from math import gcd def ex_gcd(a, b): """扩展欧几里得算法""" if b == 0: return a, 1, 0 g, x, y = ex_gcd(b, a % b) return g, y, x - (a // b) * y def solve(): k = int(input()) mods = [] rems = [] for _ in range(k): mi, ri = map(int, input().split()) mods.append(mi) rems.append(ri) M = mods[0] R = rems[0] for i in range(1, len(mods)): Mi = mods[i] Ri = rems[i] g, p, q = ex_gcd(M, Mi) if (Ri - R) % g != 0: print(-1) # No solution exists. return tmp = ((Ri - R) // g) * p % (Mi // g) R += M * tmp M *= Mi // g while R < 0: R += M print(R % M) if __name__ == "__main__": T = int(input()) # Number of test cases results = [] for t in range(T): solve() ``` 以上程序实现了扩展中国剩余定理的方法,并能够正确处理多组测试样例的情况。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三更鬼

谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值