深度学习环境搭建
pytorch cudnn cuda
薛定猫的谔w
哈尔滨工业大学(深圳) 计算机技术
展开
-
Linux多CUDA版本共存并切换使用
一、安装多个版本的CUDA由于需要在linux服务器上配置多个实验环境,每个环境要求的cuda、pytorch等工具包是不同的版本。笔者是在安装了cuda10.1之后,在追加安装的cuda9.0。安装多个cuda工具包与安装一个的过程类似,详细步骤见这篇文章这里就说一下安装多个cuda需要注意的点:(以追加安装cuda9.0为例)1、首先,因为所用的Linux服务器为Ubuntu18.04,在Nvidia官网选择cuda版本时显示cuda9.0只支持17.04和16.04的Ubuntu,这里18.04原创 2020-09-16 19:39:45 · 9158 阅读 · 0 评论 -
[bottom-up-attention] 提取object-level features问题汇总
1.执行generate_tsv.py时,出现以下异常信息Traceback (most recent call last):File "./tools/generate_tsv.py", line 26, infrom fast_rcnn.test import im_detect,_get_blobsFile "/home/vilbert_beta/bottom-up-attention/tools/../lib/fast_rcnn/test.py", line 17, infrom fast原创 2020-12-20 20:47:21 · 768 阅读 · 2 评论 -
Ubuntu18.04+CUDA10.1+OpenCV3.4.12+Python2.7环境下安装caffe
几个前提确认自己的机器上已经成功安装了NVIDIA driver、CUDA、cudnn详细步骤可参考之前写的安装说明说明按照Caffe官方安装教程的说明,有两种安装方式,make(官方版)和cmake(社区支持),使用make过程中遇到不少坑,最终笔者使用cmake安装成功开始1.首先安装后续步骤需要的各种依赖包,依次输入以下命令sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev lib原创 2020-12-20 15:53:48 · 842 阅读 · 1 评论 -
关于Pytorch框架
python3.7已经移除了cuda()函数中async关键字,而用non_blocking代替。函数原型:cuda(device=None, non_blocking=False) → Tensor原创 2020-07-08 10:20:50 · 210 阅读 · 0 评论 -
Ubuntu18.04安装NVIDIA显卡驱动、cuda10.1以及cudnn-10.1-7.6.4
一、安装NVIDIA显卡驱动(drivers)方式1:官网下载对应的驱动文件,手动安装(离线) 下载前先了解自己机器、显卡的基本信息。本文以TITAN X 为例,下载的驱动文件名为NVIDIA-Linux-x86_64-430.64.run 执行该驱动文件进行安装,需要root权限:sudo bash NVIDIA-Linux-x86_64-430.26.run# 有博客提到需要添加相应的参数,否则容易导致安装失败sudo bash NVIDIA-Linux-x86_64-430.26.run原创 2020-06-23 21:29:10 · 2966 阅读 · 2 评论 -
Linux服务器安装配置VNC Server
VNC(Virtual Network Computing),是一种使用RFB协议的屏幕画面分享及远程操作软件。VNC与操作系统无关,因此能够跨平台使用。例如在Windows系统利用VNC Viewer客户端远程操纵装有VNC Server的Linux服务器。本文的Linux环境是Ubuntu16.04。Windows VNC Viewer 客户端下载点这里下载合适版本的客户端软件。Linux VNC Server安装(以Ubuntu16.04为例)1.安装Ubuntu桌面,主要是gnome的各种原创 2020-06-25 10:41:25 · 1124 阅读 · 0 评论 -
Linux nvidia-docker GPU环境搭建
搭建GPU开发环境需要nvidia-driver、cuda、cudnn等,同时需要anaconda、pytorch等常用软件和框架。需要注意的是安装这些工具时版本要匹配兼容。如果每次新添机器,传统的方式需要在每台机器上把这些工具包和库都安装一遍,极其费劲。利用容器技术docker可以帮我们方便地进行自动化部署。在执行下文的安装配置之前,请确认机器上已经安装nvidia-driver(可通过命令nvidia-smi查看)、Docker(版本不低于19.03)安装nvidia-docker由于普通的doc原创 2020-06-25 16:07:47 · 2569 阅读 · 1 评论