graph-based pyramid global context reasoning for COVID-19 lung infections segmentation

论文提出Graph-PGCR模块,通过显著性感知投影选择像素,利用GCN在多尺度图上建模感染块间的长期依赖,解决了CT图像中感染区域分割的挑战。SAP机制选择关键像素,多尺度GCN捕获不同大小感染块的上下文模式,提高分割效果。
摘要由CSDN通过智能技术生成

论文来源
https://arxiv.org/abs/2103.04235
论文题为基于图的金字塔并带有显著性感知的全局上下文推理。研究领域为图像语义分割

abstract

自COVID-19爆发以来,对肺部CT图像感染分割一时成为研究的热点。感染区域分割的challenge在于:感染区域分布于多个肺叶上且感染块大小不一。本文提出了一个名为Graph-based Pyramid Global Context Reasoning(Graph-PGCR)模块来对各分散(disjoint)感染块的long-range dependencies以及大小不一的尺寸联系进行建模。这些工作主要包括:1.提出一种显著性感知投影机制(saliency-aware projection mechanism,SAP)来挑选与感染块关联性最大的像素集合,利用这些像素点作为图的顶点进行建图;2.在建立好的图上,利用GCN从多个肺叶区域来挖掘long-term 上下文信息;3.通过多采样率的方式建立多尺度的图来解决各感染块size不一的问题。综合以上,来捕捉CT图像上感染块之间long-range multi-scale contextual patterns,从而达到好的分割效果。

introduction

SAP作用:发现哪些是informative parts,并选出discriminative pixels用于后续的全连接图的建立。在SAP中使用不同的采样率得到多个图(类似金字塔结构)。较低的采样率(意味着采样步长 σ \sigma σ越大)得到的图会更粗糙一些,感受野的尺寸越大,携带的信息更加global;较高的采样率(意味着采样步长 σ \sigma σ越小),感受野的scale小,得到的采样点数越多,获得的信息更加fine-grained.总的来说,本文的贡献点分为以下几部分:
(1)提出Graph-PGCR来建模多个不连贯的感染块之间的long-range dependencies以及大小不一致问题。
(2)SAP机制用于选择关联性最大的pixels用作图节点,利用GCN来传播global contextual information
(3)利用不同的采样步长 σ \sigma σ来获得多尺寸的图,以捕获大小不一的感染块之间的contextual patterns
(4) 在公开的/私有的COVID-19数据集上的大量实验,证明本文提出方法的有效性。

methods

模型整体架构如图所示
在这里插入图片描述
对于UNet-Encoder初步编码的feature map X,本文接连使用了channel attention module以及spatial attention module得到增强的特征图 X ~ ∈ R S × H × W \widetilde X \in\R^{S\times H\times W} X

Efficient graph-based image segmentation 是一种高效的基于图的图像分割算法。该算法的目标是将一张输入图像分割成具有相似特征的区域,从而更好地理解图像内容。 在这个算法中,图像被表示为一个图,由一组节点和边组成。每个节点代表图像中的一个像素,而边则表示两个像素之间的相似性或连接性。为了实现图像的分割,算法使用了一种称为最小生成树的技术。通过计算图中边的权重,然后根据权重构建一棵最小生成树,算法可以将图像分割成多个区域。 具体来说,算法从每个像素开始,计算其与相邻像素的相似性,并将相似性作为边的权重。然后,根据这些权重构建最小生成树。接着,算法通过逐步将较大的边替换为较小的边,来划分不同的区域。这个过程一直持续到图中没有更多的边可以替换为止。最终,每个区域被分配一个唯一的标签,从而实现了图像的分割。 通过使用这种算法,可以得到高质量的图像分割结果,该结果可以用于各种图像处理任务,如目标检测、图像分析等。与其他图像分割算法相比,Efficient graph-based image segmentation 算法具有计算效率高和分割结果准确度高的优势,因此在图像处理领域得到广泛应用。 总之,Efficient graph-based image segmentation 是一种高效且精确的图像分割算法,通过构建最小生成树来划分图像区域,为图像处理提供了强大的工具。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值