Linux多CUDA版本共存并切换使用

本文介绍了如何在Linux(Ubuntu 18.04)上安装和管理多个CUDA版本,包括降级gcc/g++以兼容CUDA9.0,并提供在不同CUDA版本间切换的方法,强调了软链接在版本管理中的作用以及cudnn的配合使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、安装多个版本的CUDA

由于需要在linux服务器上配置多个实验环境,每个环境要求的cuda、pytorch等工具包是不同的版本。笔者是在安装了cuda10.1之后,在追加安装的cuda9.0。安装多个cuda工具包与安装一个的过程类似,详细步骤见这篇文章
这里就说一下安装多个cuda需要注意的点:(以追加安装cuda9.0为例)
1、首先,因为所用的Linux服务器为Ubuntu18.04,在Nvidia官网选择cuda版本时显示cuda9.0只支持17.04和16.04的Ubuntu,这里18.04版本的系统也是能够兼容16.04版本,所以选择16.04的安装文件下载即可。
2、在安装过程中驱动部分和是否创建软链接均先选择no
3、这里因为Ubuntu18.04版本使用了高版本的gcc和g++(7.4),要先将版本降下来才能安装cuda9.0版本(这里是降至6.5)
执行以下命令

sudo apt-get install gcc-6
sudo apt-get install g++-6

进入到/us

### 实现 CUDA 多版本共存 为了在同一台机器上安装和管理CUDA 版本,可以采取以下方法来确保不同版本之间不会相互冲突,能方便地进行切换。 #### Windows 下的 CUDA 版本共存 在 Windows 系统中,可以通过不同的目录结构来安装CUDA 工具包版本。每个 CUDA 版本应被独立安装到指定路径下,例如 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X`[^1]。通过这种方式,即使存在CUDA 版本也不会互相干扰。 对于 TensorFlow 的特定需求来说,选择合适的 CUDA 和 cuDNN 组合非常重要。比如 TensorFlow 2.x 可能支持某些特定范围内的 CUDA 和 cuDNN 版本组合。因此,在安装前应当查阅官方文档确认兼容性列表。 当需要使用某个具体版本时,则需调整系统的环境变量指向该版本对应的文件夹位置: - 将目标 CUDA 路径加入至 `PATH` 中; - 设置 `CUDA_PATH` 或者修改已有的 `CUDA_HOME` 来指明当前使用CUDA 主目录; - 更新 `LD_LIBRARY_PATH` (虽然这通常是 Linux 上的做法),但在一些情况下也可能适用于 Windows 平台上的一些应用程序。 #### Linux (Ubuntu) 下的 CUDA 版本共存Ubuntu 环境里,同样推荐采用分离式的安装方式——即让每套 CUDA 开发工具集各自位于 `/usr/local/` 下的不同子文件夹内,像这样:`/usr/local/cuda-X.Y`[^3]。这样做不仅有助于保持系统整洁有序,而且便于后续管理和维护工作。 针对环境变量方面的工作主要集中在编辑用户的 shell 配置文件(如 `.bashrc`)。这里给出一段用于动态加载所需 CUDA 版本配置的例子代码片段[^4]: ```bash function cuda-select { if [ "$#" -ne 1 ]; then echo "Usage: $0 <version>" return 1 fi local version=$1 export PATH=/usr/local/cuda-$version/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-$version/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} } ``` 上述脚本定义了一个名为 `cuda-select` 的函数,接受一个参数作为要激活的 CUDA 版本号。调用此命令后即可立即生效新的设置而无需重启终端会话。 另外值得注意的是,在实际操作过程中可能还需要处理 NVIDIA 显卡驱动程序更新带来的影响;通常建议先完成驱动升级再着手于 CUDA 套件本身的操作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值