DeepDriving | 多目标跟踪算法之DeepSORT

本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。

原文链接:多目标跟踪算法之DeepSORT

1 简介

上一篇文章DeepDriving | 多目标跟踪算法之SORT介绍了多目标跟踪算法SORT,该算法虽然速度很快,但是也存在ID切换频繁等问题。针对这些问题,作者时隔一年后又在文章Simple Online and Realtime Tracking with a Deep Association Metric中提出了DeepSORT算法。与SORT仅仅采用边界框的IOU作为匹配时的距离度量不同的是,DeepSORT采用一种更可靠的距离度量方法,该方法结合了物体的运动和外观信息,其中外观信息是通过一个在大规模行人重识别数据集上离线训练的CNN网络提取的。基于这些改进,DeepSORT提升了跟踪算法的鲁棒性,将ID切换率减少了45%,并同时保持容易部署、高效运行的优点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值