本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。
原文链接:多目标跟踪算法之DeepSORT
1 简介
上一篇文章DeepDriving | 多目标跟踪算法之SORT介绍了多目标跟踪算法SORT
,该算法虽然速度很快,但是也存在ID
切换频繁等问题。针对这些问题,作者时隔一年后又在文章《Simple Online and Realtime Tracking with a Deep Association Metric
》中提出了DeepSORT
算法。与SORT
仅仅采用边界框的IOU
作为匹配时的距离度量不同的是,DeepSORT
采用一种更可靠的距离度量方法,该方法结合了物体的运动和外观信息,其中外观信息是通过一个在大规模行人重识别数据集上离线训练的CNN
网络提取的。基于这些改进,DeepSORT
提升了跟踪算法的鲁棒性,将ID
切换率减少了45%
,并同时保持容易部署、高效运行的优点。