本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:实战 | YOLOv10模型微调检测肾结石并提高准确率
前 言
对YOLOv10模型进行微调以增强肾结石检测,将诊断时间从每份报告 15-25 分钟大幅缩短至每秒处理约150 份报告。这项研究面向医学研究人员、医疗保健专业人士和 AI 公司,通过以数据为中心的技术,无需改变模型架构,即可获得94.1 的 mAP50 。
NMS Free Training真的有效吗?
Ao Wang、Hui Chen [1]等人最近发布了他们的 YOLOv10 实现。在他们的论文中,作者将 NMS Free Training 的概念融入到了 YOLO 检测流程中。然而,问题是——它是什么,它又有何不同?
要理解这一点,重要的是要了解非最大抑制 (或) NMS 是什么,以及它是如何工作的。在Juan Terven 和 Diana Cordova-Esparza [2]的论文中,展示了 NMS 的工作算法。
他们将其解释为对象检测算法中使用的后处理技术,用于减少重叠边界框的数量并提高整体检测质量。NMS 可以过滤掉冗余和不相关的边界框,只保留最准确的边界框。下方右显示了该算法的更好的可视化效果。
然而,YOLOv10 的作者在他们的论文中使用了一种无 NMS 的方法进行对象检测。他们认为,YOLO 模型的先前变体严重依赖 NMS 进行后处理,这导致部署期间的推理效率不理想。为此,双标签分配和一致匹配指标是首选。为了更好地理解这一点,让我们检查一下图中的架构。
双标签分配
传统上,一对多分配提供丰富的监督,但需要非最大抑制 (NMS) 后处理。相比之下,一对一分配更简单且无 NMS,但提供较弱的监督,影响准确性和收敛性。为了解决这些问题,双标签分配在传统的一对多头旁边引入了第二个一对一头。两个头在训练期间联合运行,通过一对多设置的全面监督增强模型。只有更高效的一对一头用于推理,从而减少计算开销。该方法利用一对一匹配中的前一选择,性能与匈牙利匹配相当,但训练复杂度降低。
一致性匹配度量
肾结石检测:数据集可视化
在本研究文章中,我们使用了