本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。
原文链接:One-Shot都嫌多,Zero-Shot实例样本分割
给一个包含了未知种类多个实体的没训练过的新样本(the query image),如何检测以及分割所有这些实例???
1 分割回顾
1.1 实例分割(Instance Segmentation)
如下图所示:
实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。因此,实例分割的研究长期以来都有着两条线,分别是自下而上的基于语义分割的方法和自上而下的基于检测的方法,这两种方法都属于两阶段的方法,下面将分别简单介绍。
以下摘自于:CSDN- 三十八元
1.1.1 两阶段实例分割
自上而下(Top-Down)
自上而下的实例分割方法的思路是:首先通过目标检测的方法找出实例所在的区域(bounding box),再在检测框内进行语义分割,每个分割结果都作为一个不同的实例输出。
这类方法的代表作就是大名鼎鼎的Mask R-CNN了,如下图,总体结构就是Faster R-CNN的两阶段目标检测,box head用来做检测,增加了mask head用来做分割,模型大家都很熟,细节就不再赘述。
自下而上(Bottom-Up)
自下而上的