计算机视觉研究院 | One-Shot都嫌多,Zero-Shot实例样本分割

本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。

原文链接:One-Shot都嫌多,Zero-Shot实例样本分割

给一个包含了未知种类多个实体的没训练过的新样本(the query image),如何检测以及分割所有这些实例???

1 分割回顾

1.1 实例分割(Instance Segmentation)

 如下图所示:

实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。因此,实例分割的研究长期以来都有着两条线,分别是自下而上的基于语义分割的方法和自上而下的基于检测的方法,这两种方法都属于两阶段的方法,下面将分别简单介绍。

以下摘自于:CSDN- 三十八元

1.1.1 两阶段实例分割

自上而下(Top-Down)

自上而下的实例分割方法的思路是:首先通过目标检测的方法找出实例所在的区域(bounding box),再在检测框内进行语义分割,每个分割结果都作为一个不同的实例输出。

这类方法的代表作就是大名鼎鼎的Mask R-CNN了,如下图,总体结构就是Faster R-CNN的两阶段目标检测,box head用来做检测,增加了mask head用来做分割,模型大家都很熟,细节就不再赘述。

自下而上(Bottom-Up)

自下而上的

### One-ShotZero-Shot 物体检测的概念 One-shot物体检测和zero-shot物体检测都是针对少量标注数据情况下的视觉识别任务,旨在解决传统机器学习模型需要大量标记数据才能有效工作的问题。 #### One-Shot 物体检测概念 One-shot物体检测是指仅需一张或极少量样本图像就能完成对新类别物体的学习并进行准确检测的任务。这种设置模拟了人类快速适应从未见过的对象的能力,在实际应用中有很高的价值[^1]。为了实现这一目标,研究者通常会采用元学习(meta-learning)策略或其他能够增强泛化能力的技术方案。 #### Zero-Shot 物体检测概念 Zero-shot物体检测则更加激进,它试图在没有任何该类别的训练样例的情况下也能正确识别新的未知类别。这依赖于跨模态的知识迁移机制——即利用已知类别与未见类别之间存在的语义关联来进行推理判断。例如,可以通过自然语言描述或者其他形式的辅助信息来帮助理解未曾接触过的物品特征[^4]。 ### 实现方法比较 对于这两种类型的少样本学习问题,当前主流的研究方向集中在以下几个方面: - **度量学习(Metric Learning)** 构建合适的距离函数以衡量不同图片间的相似程度,从而使得即使是在仅有单个例子的情形下也可以找到最接近的目标实例。这种方法被广泛应用于one-shot场景中,并且可以有效地防止过拟合现象的发生。 - **对比学习(Contrastive Learning)** 如文献所提到的那样,通过引入监督性的对比损失项(CPE),可以在保持同类间紧凑聚集的同时拉开异类间距,进而提升模型区分细微差异的能力。这种方式不仅适用于few-shot环境,同样也适合处理更极端条件下的zero-shot挑战[^3]。 - **预训练与微调(Finetuning with Pretrained Models)** 鉴于新颖类的数据极为稀缺的事实,预先在一个大规模通用数据库上训练基础网络结构变得尤为重要。之后再针对具体的小样本集做适当调整即可获得较好的性能表现。值得注意的是,在某些情况下甚至完全移除了新型类目相关的资料以防其先验知识干扰后续测试过程中的公平性评估[^2]。 ```python import torch.nn as nn class ContrastiveLoss(nn.Module): """Supervised Contrastive Loss function""" def __init__(self, temperature=0.5): super().__init__() self.temperature = temperature def forward(self, features, labels=None, mask=None): # Implementation details omitted for brevity. pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值