本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:实战 | 基于OpenCV和K-Means聚类实现颜色分割(步骤 + 代码)
介 绍
颜色分割是计算机视觉中使用的一种技术,可根据颜色识别和区分图像中的不同物体或区域。聚类算法可以自动将相似的颜色归为一组,而无需为每种颜色指定阈值。当处理颜色范围很广的图像或事先不知道确切阈值时,此功能非常有用。
本文中,我们将探索如何使用 K-Means聚类算法进行颜色分割,并计算每种颜色的对象数量。我们将使用“泡泡射击”游戏中的图像作为示例,根据轮廓查找和过滤气泡对象,并应用 K 均值算法将颜色相似的气泡分组在一起。这将使我们能够计算和提取颜色相似的气泡的蒙版,以供进一步的下游应用使用。我们将使用OpenCV和scikit-learn库进行图像分割和颜色聚类。
from matplotlib import pyplot as plt
import cv2
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
%matplotlib inl