OpenCV与AI深度学习 | 实战 | 基于OpenCV和K-Means聚类实现颜色分割(步骤 + 代码)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:实战 | 基于OpenCV和K-Means聚类实现颜色分割(步骤 + 代码)

介 绍

    颜色分割是计算机视觉中使用的一种技术,可根据颜色识别和区分图像中的不同物体或区域。聚类算法可以自动将相似的颜色归为一组,而无需为每种颜色指定阈值。当处理颜色范围很广的图像或事先不知道确切阈值时,此功能非常有用。

    本文中,我们将探索如何使用 K-Means聚类算法进行颜色分割,并计算每种颜色的对象数量。我们将使用“泡泡射击”游戏中的图像作为示例,根据轮廓查找和过滤气泡对象,并应用 K 均值算法将颜色相似的气泡分组在一起。这将使我们能够计算和提取颜色相似的气泡的蒙版,以供进一步的下游应用使用。我们将使用OpenCV和scikit-learn库进行图像分割和颜色聚类。

from matplotlib import pyplot as plt
import cv2
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
%matplotlib inl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值