本文来源公众号“程序员学长”,仅用于学术分享,侵权删,干货满满。
原文链接:快速学习一个算法,集成学习
今天给大家分享一个强大的算法模型,集成学习
集成学习(Ensemble Learning)是一种提升模型性能和鲁棒性的重要方法,它通过组合多个学习器(通常称为基学习器)来解决同一个问题。
它的核心思想是 “集体智慧”,即通过整合多个模型的预测结果,可以抵消单个模型的偏差和方差,从而提升整体的预测准确性和泛化能力。集成学习在各种复杂任务中,如分类、回归、异常检测等,显示出了强大的效果。
集成学习的类型
集成学习主要分为以下几种类型。
1.Bagging
Bagging(Bootstrap Aggregating)是一种集成方法,旨在通过平均多个模型的预测来减少方差并防止过度拟合。
-
基本原理
通过对原始数据集进行有放回的随机采样,生成多个不同的子数据集,每个子数据集用于训练一个基学习器。
最终的预测结果通过对所有基学习器的预测结果进行平均(回归)或投票(分类)得到。
-
典型算法
随机森林(Random Forest),其中每个基学