程序员学长 | 快速学习一个算法,集成学习

本文来源公众号“程序员学长”,仅用于学术分享,侵权删,干货满满。

原文链接:快速学习一个算法,集成学习

今天给大家分享一个强大的算法模型,集成学习

集成学习(Ensemble Learning)是一种提升模型性能和鲁棒性的重要方法,它通过组合多个学习器(通常称为基学习器)来解决同一个问题。

它的核心思想是 “集体智慧”,即通过整合多个模型的预测结果,可以抵消单个模型的偏差和方差,从而提升整体的预测准确性和泛化能力。集成学习在各种复杂任务中,如分类、回归、异常检测等,显示出了强大的效果。

集成学习的类型

集成学习主要分为以下几种类型。

1.Bagging

Bagging(Bootstrap Aggregating)是一种集成方法,旨在通过平均多个模型的预测来减少方差并防止过度拟合。

  • 基本原理

    通过对原始数据集进行有放回的随机采样,生成多个不同的子数据集,每个子数据集用于训练一个基学习器。

    最终的预测结果通过对所有基学习器的预测结果进行平均(回归)或投票(分类)得到。

  • 典型算法

    随机森林(Random Forest),其中每个基学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值