本文来源公众号“算法进阶”,仅用于学术分享,侵权删,干货满满。
神经网络目前是人工智能中最强大的工具。当它们应用于更大的数据集时,没有什么可与之抗衡。Perimeter Institute for Theoretical Physics 的研究员 Sebastian Wetzel(opens a new tab) 说。
然而,一直以来,神经网络一直处于劣势。当今许多成功网络的基本构建块被称为多层感知器 (MLP)。但是,尽管取得了一系列成功,人类还是无法理解建立在这些 MLP 上的网络是如何得出结论的,或者是否可能有一些基本原理可以解释这些结果。神经网络所执行的惊人壮举,就像魔术师的壮举一样,被保密,隐藏在通常所说的黑匣子后面。
长期以来,AI 研究人员一直想知道,是否有可能让不同类型的网络以更透明的方式提供同样可靠的结果。
2024 年 4 月的一项研究(opens a new tab) 引入了一种替代神经网络设计,称为 Kolmogorov-Arnold 网络 (KAN),它更加透明,但也可以完成常规神经网络解决某类问题的几乎所有工作。它基于 20 世纪中叶的一个数学思想,该思想已被重新发现并重新配置,以便在深度学习时代进行部署。
虽然这项创新才刚刚推出几个月,但新设计已经引起了研究和编码社区的广泛兴趣。“KAN 的可解释性更强,对于科学应用可能特别有用,因为它们可以从数据中提取科学规则,”约翰霍普金斯大学的计算机科学家 Alan Yuille(opens a new tab) 说。“[它们] 是无处不在的 MLP 的令人兴奋的新颖替代品。”研究人员已经在学习充分利用他们新发现的能力。
论文题目:KAN: Kolmogorov-Arnold Networks
论文地址&#x