集智书童 | 0.26M 参数,0.483 GFLOPs,EfficientCrackNet 轻量级检测模型 !

本文来源公众号“集智书童”,仅用于学术分享,侵权删,干货满满。

原文链接:0.26M 参数,0.483 GFLOPs,EfficientCrackNet 轻量级检测模型 !

裂纹检测,特别是在铺砌图像领域,由于具有诸如强度不均匀性、复杂拓扑、低对比度和嘈杂背景等固有的复杂性,在计算机视觉领域面临着巨大的挑战。自动裂纹检测对维护关键基础设施(包括建筑、铺砌和桥梁等)的结构完整性至关重要。

已有的轻量级方法通常面临诸如计算效率低下、复杂的裂纹图案和难以处理的背景,导致检测不准确,不适合实际应用中。

为了克服这些局限性,作者提出了EfficientCrackNet,该轻量级混合模型将卷积神经网络(CNNs)与 Transformer 相结合,用于精确的裂缝分割。EfficientCrackNet 集成了深度可分卷积层(DSC)层和移动视觉块,以捕捉全球和局部特征。该模型使用了边缘提取方法(EEM)实现高效裂缝边缘检测,而无需预训练,并用超轻量级子空间注意力模块(ULSAM)增强特征提取。

在三个基准数据集 Crack500、DeepCrack 和 GAPs384 上进行了大量实验,结果表明 EfficientCrackNet 与现有轻量级模型相比,性能优越,仅需0.26M参数和0.483 FLOPs(G)。

所提出的模型在准确性和计算效率之间找到最佳平衡,超过了最先进的轻量级模型,并提供了对实际裂缝分割的坚固和可适应解决方案。

1 Introduction

图1:在Crack500测试数据集上评估参数、mIoU和FLOPs(G)。气泡半径代表模型的FLOPs(G)。

裂缝是住宅建筑、铺砌物和桥梁上常见的结构故障,通常由于承重能力不足而导致,这会危及安全。裂缝的逐渐传播会影响结构的完整性和耐久性。因此,识别并检查裂缝对于评估和维护结构安全至关重要。2006年的一项研究表明,由于道路状况而导致的交通伤亡事故造成的损失估计为2175亿美元。这一数字代表了美国发生的所有事故总损失的43.6%。[54]。美国土木工程师协会(ASCE)在2021年基础设施报告中将美国公路基础设施评为“D”等,表示状况较差且处于风险之中。美国州际高速公路系统的分析发现,有11%的州际公路路面处于恶劣或良好状态。具体来说,有3%的路面被归类为恶劣,而8%的路面被归类为中等。

考虑到这些严重问题,提高公路基础设施的安全性、功能性和耐久性至关重要。有效地监测结构健康和评估道路状况可以实现快速决策和处理。手动的裂缝检测和分割是一项耗时且需要高度专业知识的劳动密集型任务。为了加快混凝土路面调查的进展,实现自动化裂缝分割至关重要。裂缝分割面临的主要挑战有强度不均匀、对比度不一致以及背景杂乱。

由于具有客观性、成本效益、效率和安全等优点,基于视觉的裂缝分割方法近年来在学术界和工业界受到了广泛关注。过去十年,深度学习经历了复苏,其在各种计算机视觉应用方面取得了显著成功。目前,用于裂缝分割研究的许多语义分割算法依赖于卷积神经网络(CNNs)[6, 19, 63]。CNNs的优势在于其卷积核具有翻译不变性和局部敏感性,这使得它们能够精确捕捉局部空间特征。卷积操作,由于其固定感受野,在识别局部模式方面有效,但在捕获全局上下文特征或长程依赖关系方面有限。[29]

语义分割中,仅依赖局部特征进行像素级分类可能导致歧义,而结合全局上下文特征可以提高每个像素的语义内容精度。然而,卷积核在理解和建立图像的整体结构以及不同特征之间的关系方面的能力有限,因此提高裂纹分割的准确性仍然具有挑战性。相比之下,基于 Transformer 的网络可以捕捉全局上下文特征,为这些挑战提供了一种潜在的解决方案。然而,这些性能提升伴随着模型大小的牺牲。许多实际应用需要对资源有限的手持设备上的视觉识别任务进行及时执行。

有许多研究提出了各种用于裂纹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值