本文来源公众号“集智书童”,仅用于学术分享,侵权删,干货满满。
这篇论文探讨了知识蒸馏技术在目标检测任务中的应用,尤其是不同蒸馏温度对学生模型性能的影响。
通过将YOLOv5s作为教师网络和较小的YOLOv5s作为学生网络,作者发现,随着蒸馏温度的增加,学生的检测准确性逐渐提高,最终在特定温度下实现了mAP50和mAP50-95指标,这些指标优于原始的YOLOv5s模型。
实验结果表明,适当的知识蒸馏策略不仅可以提高模型的准确性,还可以帮助提高模型在实际应用中的可靠性和稳定性。
本文还详细记录了模型训练过程中准确性曲线和损失函数下降曲线,并显示模型在经过150个训练周期后收敛到稳定状态。
这些发现为优化目标检测算法提供了理论基础和技术参考。
I Introduction
深度学习、大数据和硬件技术的迅速发展使得计算机逐渐替代传统的手动流程,成为信息获取的必备工具。人工智能(AI)被广泛认为是工业创新的驱动器,在AI领域中,计算机视觉已经成为一个受到研究行人高度重视的领域,因为其有可能改变机器如何解释视觉数据的方式。
计算机视觉领域的一个基本任务是目标检测,这推动了相关技术的进步。历史上,目标检测经历了两个关键阶段:基于传统算法的经典技术和现代基于深度学习的技术[2]。这些发展不仅推动了科学研究,而且在各个领域具有实际价值。例如,目标检测在医学影像[3]、文本提取[4-6]和命名实体识别[7]等方面发挥着关键作用,表明其在专业领域的应用。
YOLOv5s所取得的进步体现了目标检测技术在许多领域的更广泛进步,强调了其在众多行业中的重要性。与YOLOv5s等检测算法的持续发展相辅相成的是创建了全面、标注的数据集,这对于训练AI模型至关重要。这些数据集与YOLOv5s在处理大规模检测任务方面的效率相结合,使得可以实现更准确、可靠的目标检测系统。这不仅提高了实时应用中的性能,还在自动驾驶、工业自动化和医疗等领域增强了安全性和运营效率。本文研究深度学习网络,并构建了一个结合提取待检测物体位置信息的定位技术和目标检测算法,以满足不同场景的应用要求。
本文的主要工作包括:
-
提出了一种结合位置信息和知识提取的检测算法