集智书童 | YOLOv8架构的改进:POLO 模型在多类目标检测中的突破 !

本文来源公众号“集智书童”,仅用于学术分享,侵权删,干货满满。

原文链接:YOLOv8架构的改进:POLO 模型在多类目标检测中的突破 !

基于无人机影像和目标检测技术的自动化野生动物调查已成为保护生物学中一种强大且日益流行的工具。

大多数检测器需要使用带有标注边界框的训练图像,这种做法既费时又费钱,而且并不总是明确。为了减少这种做法带来的标注负担,作者开发了POLO,这是一种可以在仅使用点标签进行训练的多类目标检测模型。

POLO基于对YOLOv8架构的简单而有效的修改,包括预测过程、训练损失和后处理方面的修改。作者在包含多达数千个单独鸟类的无人机记录图像上测试POLO,并与常规YOLOv8进行比较。

作者的实验表明,在相同的标注成本下,POLO在空中图像中计数动物的准确性得到了提高。

1 Introduction

频繁的动物普查是成功 conservation 管理的关键要求,尤其是在处理濒危物种时。在广阔的开阔景观中,可以通过从飞机或无人驾驶飞行器(UAVs)记录的空中影像来高效地调查野生动物,后者由于降低了运营成本和安全风险而越来越受到青睐。鉴于在这些飞行过程中收集了大量数据,通常会使用机器学习方法来对图像中的动物进行计数,这使得生物学家能够估计种群的发展。为此,卷积神经网络(CNNs)是最受欢迎的技术之一。

尽管卷积神经网络(CNNs)具有高检测精度的高潜力,但这种潜力受到可用于模型训练的 Token 数据量的限制[1]。由于创建 Token 数据意味着人工标注,通常以边界框的形式提供,因此从空中图像中准确计数动物的成本非常高,这限制了基于深度学习的保护工作的可扩展性。

为了降低这些成本,可以通过点标注自动创建边界框,这些标注可以以更高的速度获得,因此生产成本更低[7, 14]。这种方法很简单,只需在点标注周围生成正方形框,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值